
POGL 2020 – Liaison dynamique

1 Vue d’ensemble

Transtypage

Une classe fille (autrement appelée sous-classe) peut être considérée comme une spécialisa-
tion de sa classe mère (autrement appelée super-classe). En particulier un objet de la classe
fille peut être vu comme appartenant à la classe mère, car l’objet de la classe fille possède tous
les attributs et méthodes des objets de la classe mère. En revanche, un objet de la classe mère
ne peut pas être vu comme appartenant à la classe fille, car il lui manque peut-être certains
des attributs ou méthodes de la classe fille. En d’autres termes, l’ensemble des objets de la
classe fille peut être considéré comme un sous-ensemble des objets de la classe mère.

abstract class A {
abstract public void a();

}
class B extends A {

public void a() { System.out.println("Classe B"); }
public void b() { System.out.println("Classe B"); }

}
B objB = new B();
A objBA = new B();

Point important : une fois qu’un objet de la classe B est enregistré comme appartenant à la
classe mère A (c’est ce qui se passe avec objBA), on ne peut plus accéder qu’aux attributs et
méthodes qui étaient déjà dans A. En particulier, on peut accéder à la méthode a(), qui est
abstraite mais quand même déclarée, et on ne peut pas accéder à la méthode b(), qui n’existe
que dans la classe B.

Appel Affichage Erreur?
objB.b() Classe B
objB.a() Classe B
objBA.b() Erreur de compilation : pas de b() dans A
objBA.a() Classe B

Liaison dynamique

Lorsqu’une méthode a() est redéfinie par une classe fille B, le choix de la méthode à
appliquer n’est pas fait statiquement sur le seul critère du type. En effet, par l’effet du
transtypage évoqué ci-dessus, le type d’un objet peut apparaître différent de ce qu’il est en
réalité.

class A {
public void a() { System.out.println("Classe A"); }

}
class B extends A {

public void a() { System.out.println("Classe B"); }
}
A objA = new A();
B objB = new B();
A objBA = new B();



Appel Affichage Erreur?
objA.a() Classe A
objB.a() Classe B
objBA.a() Classe B

Dans cet exemple, nous avons d’abord deux objets objA et objB, respectivement de classe A
et de classe B, pour lesquels sont appelées respectivement les méthodes a() définies dans la
classe A et dans la classe B.

Le cas de l’objet objBA est un peu plus compliqué : il a été créé avec l’instruction new B();
comme un objet de classe B (il s’agit de son type réel), mais par la déclaration A objBA il a été
transtypé en un objet de classe A (il s’agit de son type apparent). Le type apparent est celui
qui est vu par le compilateur et par le vérifieur de type. En revanche, lors de l’appel d’une
méthode qui existe à la fois dans la classe mère et dans la classe fille, c’est le type réel qui est
consulté : dans notre exemple, même si l’objet objBA est apparemment dans la classe A, l’appel
de méthode objBA.a() utilise la définition de a() fournie par la classe B (la classe réelle de
l’objet).

Cette information sur la classe réelle d’un objet ne peut pas être connue statiquement : si
un tableau est rempli d’objets qui sont apparemment de la classe A, mais dont certains sont en
fait de la classe B, il n’est pas possible lorsqu’on regarde une case au hasard de savoir à l’avance
quelle sera la classe réelle de l’objet (“à l’avance” signifiant : “au moment de la compilation”).
Le choix définitif de la méthode à appliquer est donc fait dynamiquement, pendant l’exécution
du programme. On appelle ce phénomène la liaison dynamique.

D’un point de vue pratique, pour chaque appel d’une méthode a(), le compilateur déter-
mine statiquement une famille (c’est-à-dire un ensemble) de méthodes a() potentiellement
applicables. Cette famille regroupe typiquement une définition de méthode a() d’une classe
mère et toutes les redéfinitions faites dans les classes filles, ou petites-filles, ou descendantes
plus lointaines. Ce choix est fait en fonction des types apparents, et règle en particulier les cas
de surcharge de a(). Ensuite, lors de l’exécution du programme, une méthode a() est choisie
dynamiquement parmi cette famille en fonction du type réel de l’objet.

Pourquoi utiliser le transtypage et la liaison dynamique?

En reprenant l’exemple du démineur, nous pourrions imaginer avoir deux classes pour les
cases du jeu : une classe principale, et une sous-classe spécifique pour les cases piégées. Cette
sous-classe redéfinirait alors la méthode décrivant la réaction aux clics.

class Case {
public void clicGauche() { /* Code OK */ }

}
class Piegee extends Case {

public void clicGauche() { /* Code Perdu */ }
}

Ensuite, toutes les cases, piégées ou non, sont stockées dans un même tableau. Ce tableau ne
peut pas avoir le type Piegee[][], car il ne contient pas que des cases piégées. Son type sera
donc Case[][] et il pourra contenir à la fois des cases normales et des cases piégées, grâce
au transtypage. Ainsi, si l’on considère une case c prise dans le tableau, cette case c a le type
apparent Case. En revanche, son type réel peut être Case ou Piegee, et l’on veut qu’un clic sur
une case de type réel Piegee exécute le code perdant et non le code gagnant.



2 Appel de méthodes et liaison dynamique en détail

On écrit toujours un appel de méthode de l’une des deux façons suivantes :
— x.f(y), où x est l’objet dont on déclenche une méthode, f est le nom de la méthode

appelée, et y est l’ensemble des paramètres fournis. On appelle les arguments y les
paramètres explicites et x le paramètre implicite.

— f(y). Cette deuxième forme est en réalité un abréviation pour this.f(y), où f et y
sont comme avant le nom de méthode et les paramètres explicites, et où le paramètre
implicite est this, l’objet depuis lequel on invoque la méthode.

Prenons donc un appel de méthode de la forme x.f(y), où le paramètre implicite x est éven-
tuellement this, et notons C la classe réelle de l’objet x. La méthode à appeler est déterminée
ainsi :

1. On construit la liste L de toutes les méthodes appelées f se trouvant dans l’une des
deux situations suivantes :
— définie dans la classe C, ou
— définie dans une super-classe de C et qualifiée par public ou protected.

2. On élimine de la liste L toutes les méthodes dont la signature ne correspond pas aux
paramètres explicites y. Incidemment, cette étape résout les éventuelles surcharges de
notre méthode f.

3. Si on a obtenu une méthode f(y) associée à l’un des qualificatifs private, static, ou
final, alors on invoque celle-ci.

4. Sinon, on cherche la définition de f(y) la plus récente : si on a une définition de f(y)
dans C, alors on invoque celle-ci ; sinon, on regarde dans la super-classe de C ; si on ne
trouve toujours pas, on remonte à la super-classe de la super-classe de C, etc.

class A {
private a(int n) { System.out.println("Classe A"+n); }
public a(char c) { System.out.println("Classe A"+c); }

}
class B extends A {

public a(int n) { System.out.println("Classe B"+n); }
}
class C extends A {

public a(int n) { System.out.println("Classe C"+n); }
public a() { System.out.println("Classe C"); }

}
class D extends C {

public a(int n) { System.out.println("Classe D"+n); }
}
class E extends D {

private b(int n) { System.out.println("Classe E"+n); }
}
E obj = new E();

On considère un appel obj.a(3), où le paramètre implicite obj est de la classe E et où le
paramètre explicite 3 est un unique argument de type int. Les étapes sont les suivantes :

1. La liste L contient les définitions A.a(char), C.a(int), C.a(), D.a(int). La définition
A.a(int) n’est pas retenue car elle est qualifiée par private, et la définition B.a(int)
non plus car B n’est pas une super-classe de E. La définition E.b(int) est écartée car
elle n’a pas le bon nom.



2. On élimine les définitions A.a(char) et C.a() car elles ne correspondent pas au type
de l’argument explicite 3.

3. Il n’y a pas dans L de méthode qualifiée par private, static, ou final, donc on passe
à l’étape suivante.

4. Il n’y a pas de définition pour a(int) dans la classe E, donc on regarde dans sa super-
classe immédiate D. Il y a une définition pour a(int) dans D : c’est celle-ci qu’on invoque.
La définition C.a(int) est donc ignorée (elle a été redéfinie par D.a(int)).

Finalement, l’appel utilise la définition D.a(int).

En pratique, on ne reproduit pas cette procédure dynamiquement à chaque fois qu’un appel
de méthode est exécuté. Pour chaque classe, une table de méthodes est précalculée statiquement
par le compilateur, qui indique directement les endroits où aller chercher les définitions des
méthodes pour chaque combinaison f(y) acceptable. Pour exécuter un appel de méthode
x.f(y), on va donc consulter la table des méthodes de la classe réelle de x.
Dans notre exemple, les tables de méthodes des classes C et E sont les suivantes :

Classe C Classe E
a() : C.a() a() : C.a()
a(int) : C.a(int) a(int) : D.a(int)
a(char) : A.a(char) a(char) : A.a(char)

b(int) : E.b(int)

Si un appel ne correspond à aucune des lignes de la table de méthodes de la classe concernée,
alors une erreur est renvoyée (normalement, cela se fait à la compilation).

3 Transtypage en détail

Lorsqu’une classe B est une sous-classe d’une classe A, on a déjà vu que tout objet de la
classe B pouvait être utilisé comme un objet de la classe A (en d’autres termes, les objets de la
classe B forment un sous-ensemble des objets de la classe A).

Ceci est une opération de transtypage “vers le haut”, dans laquelle un objet obj d’une sous-
classe B prend l’apparence d’un objet d’une super-classe A. L’objet obj a alors un type apparent
A tandis que son type réel reste B. Le transtypage est une modification du type apparent.

Le transtypage est également possible dans l’autre sens, “vers le bas”, via la notation
(B)obj, mais seulement si le type réel de l’objet obj le permet : le type réel de l’objet obj doit
être un sous-type du nouveau type apparent souhaité B.

class A { }
class B extends A { }
class C extends A {

public void print() { System.out.println("Classe C"); }
}
class D extends C { }

public static void f(C obj) { obj.print(); }

A obja = new A();
B objb = new B();
C objc = new C();
D objd = new D();
A objx = new D();



Ici, les objets obja, objb, objc, et objd ont chacun un type apparent égal à leur type réel A, B,
C, ou D. L’objet objx en revanche a le type réel D et le type apparent A, ce qui est légitime car
A est une super-classe de D. Une définition C objy = new A(); n’aurait en revanche pas été
possible : le compilateur l’aurait interdite car C n’est pas une super-classe de A (et le compilateur
aurait eu raison, en particulier car les objets de la classe C sont censés posséder une méthode
print(), que n’ont pas les objets de type réel A).

La méthode statique f(C) attend en paramètre explicite un objet obj de la classe C. Le
compilateur vérifie ceci sur la base du type apparent de obj. Voici différents cas d’appel qui
seraient acceptés ou rejetés.

Appel Affichage Erreur ?
f(obja) Erreur de compilation : obja n’est pas de type C
f(objb) Erreur de compilation : objb n’est pas de type C
f(objc) Classe C
f(objd) Classe C
f(objx) Erreur de compilation : objx n’est pas de type C
f((C)objx) Classe C
f((D)objx) Classe C
f((C)objb) Erreur de compilation : transtypage incompatible
f((C)obja) Erreur d’exécution : transtypage impossible
f((C)(A)objb) Erreur d’exécution : transtypage impossible

Le compilateur rejette les trois cas où le type apparent de l’argument n’est pas un sous-type du
type C attendu (objets obja et objx de type apparent A, et objet objb de type apparent B), et
accepte les autres appels où l’argument a le type apparent C ou D (éventuellement grâce à une
opération de transtypage (C)objx ou (D)objx).

Une deuxième sorte d’erreur de compilation apparaît au niveau du transtypage (C)objb,
car le compilateur détecte que B et C sont dans des branches différentes, et qu’il n’est pas
possible de passer de l’une à l’autre. La combinaison (C)(A)objb en revanche, même si elle
a le même effet, n’est pas bloquée par le compilateur, puisque ce dernier détecte d’abord un
transtypage de B vers A (toujours possible) puis un transtypage de A vers C (parfois possible, à
déterminer à l’exécution en fonction du type réel).

Enfin, dans le cas d’un transtypage vers un sous-type, le compilateur accepte le code écrit, et
laisse à la machine virtuelle la responsabilité de vérifier dynamiquement (à l’exécution) que le
type réel de l’objet est compatible avec le transtypage. Les cas (C)objx et (D)objx s’exécutent
correctement car objx est de type réel D. Les cas (C)obja et (C)(A)objb provoquent une erreur
l’exécution, car les types réels A et B ne permettent pas un transtypage vers C.

Pour éviter ce genre d’erreur de transtypage à l’exécution, on utilise en général un test avec
instanceof permettant de vérifier que le transtypage est possible :

if (obj instanceof C) {
f((C)obj);

} else { ... }


