Itérateurs
POGL, TP2. Interfaces et classes paramétrées.

Dans ce TP, nous allons réaliser deux classes basiques de conteneurs sur lesquels il est possible d’itérer,
et qui implémentent des interfaces extraites de la bibliotheque standard.

Une interface pour les listes

Dans le jargon de Java une liste désigne une collection ordonnée, ou séquence, d’éléments. La ca-
ractéristique principale d’une telle collection est qu’on peut accéder & un élément en fonction de sa
position, donnée par un indice entier. On propose pour cela l'interface suivante, a reproduire dans
votre code (extraite de la version plus complete java.util.List) :

interface List<T> {
/** Renvoie 1’é&lément d’indice [i]. */
T get(int 1i);
/** Ajoute 1’élément [elt] & la fin de la liste. */
void add(T elt);

Implémentation par un tableau
Des listes peuvent étre représentées en utilisant les tableaux primitifs de Java. On obtient alors des
listes dont la capacité est limitée par la taille des tableaux utilisés.

1. Définir une classe FixedCapacityList stockant des éléments de type Object dans un tableau
de type Object[], en respectant les indications suivantes :
— la classe doit implémenter I'interface List<Object>,
— le constructeur doit prendre en parametre la capacité souhaitée,
— la méthode add ne doit rien faire si la capacité est atteinte,
— la méthode get n’a pas besoin de vérifier les acces hors limites,
— pour faciliter la composition avec les autres classes qui composeront le paquet final, les
attributs peuvent avoir la visibilité protected.

Itérateurs
En Java, l'itération sur les éléments d’une collection se fait via la construction d’un objet itérateur
qui est chargé de fournir un a un les éléments de la collection.

L’itérateur d’une collection d’éléments de type T a le type Iterator<T>, défini par l'interface
suivante (importez-la avec la commande import java.util.Iterator;) :

interface Iterator<T> {
/** Renvoie vrai s’il existe un prochain élément. */
boolean hasNext();
/** Donne le prochain élément et prépare le passage au suivant. */
T next();
3

Chaque appel a la méthode next () fait avancer l'itération en renvoyant 1’élément suivant.

On manifeste qu’il est possible d’itérer sur une collection en déclarant que cette collection implémente
I'interface Iterable<T>, qui demande une méthode produisant un itérateur du type correspondant
(importez-la avec la commande import java.lang.Iterable;).

interface Iterable<T> {
Iterator<T> iterator();

Par exemple, la classe ArrayList<T> implémentant 'interface Iterable<T>, on peut afficher I’en-
semble des éléments d’une liste de chaines de caracteres grace au code suivant :

ArrayList<String> vent = new ArrayList<String>(Q);

vent.add ("’ , , < - >.");

vent.add (" s ,) S) s ’ ")

vent.add (" s , ¥

// Création d’un itérateur

Iterator<String> it = vent.iterator();

// Tant qu’il reste des éléments...

while (it.hasNext()) {
// prendre le prochain élément et 1’afficher.
System.out.println(it.next());

2. Modifier ’exemple précédent pour afficher deux fois chaque élément, puis pour n’afficher qu’un
élément sur deux.

Des itérateurs pour les tableaux

Nous allons implémenter deux manieres d’itérer sur nos listes a capacité fixe, dans l'ordre crois-
sant ou décroissant des indices. Dans chaque cas, il faut créer une classe implémentant 'interface
Iterator<Object>, et la doter d’attributs permettant de suivre la progression de 'itération.

3. Définir une classe AscendingIterator implémentant 'interface Iterator<Object> et représentant
une itération sur un objet FixedCapacityList, qui fournit les éléments dans l'ordre du pre-
mier au dernier. Faire ensuite en sorte que la classe FixedCapacityList implémente 'interface
Iterable<Object>.

4. Définir une classe DescendingIterator implémentant 'interface Iterator<Object> et représentant
une itération sur un objet FixedCapacityList, qui fournit les éléments dans ’ordre du dernier
au premier.

Implémentation par une liste chainée
Pour implémenter 'interface List, une alternative aux tableaux utilisés dans FixedCapacityList
consiste a définir une structure de liste chainée : pour une liste dont les éléments sont de type T, on
utilise plusieurs blocs reliés entre eux et contenant chacun un élément.

Concretement, on définit une classe BLock<T> ayant :

— un attribut contents de type T pour I’élément contenu,

— un attribut nextBlock de type Block<T> désignant le bloc suivant, ou valant null s’il n’y a

pas de bloc suivant.

La classe LinkedList<T> contient alors deux attributs firstBlock et lastBlock, tous deux de type
Block<T>, désignant respectivement les premier et dernier blocs de la liste.

5. Définir des classes Block<T> et LinkedList<T> stockant des éléments de type T dans une liste

chainée, en respectant les indications suivantes :

— la classe LinkedList<T> doit implémenter l'interface List<T>,

— lors de la création d’une liste, les champs firstBlock et lastBlock doivent étre initialisés
a null,

— la méthode get (int i) doit renvoyer le contenu du premier bloc si i vaut 0, le contenu du
bloc suivant si 1 vaut 1, de celui d’apres si i vaut 2, etc,

— la méthode add doit ajouter un bloc apres le dernier bloc (et mettre a jour le champ
nextBlock du dernier bloc).

6. Définir une classe LinkedListIterator<T> implémentant I'interface Iterator<T> et représentant
une itération sur un objet LinkedList<T>, dans 'ordre du premier au dernier. Faire ensuite
en sorte que la classe LinkedList implémente l'interface Iterable<Object>.

