Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay Fall 2023 https://www.lri.fr/∼[blsk/LambdaCalculus/](https://www.lri.fr/~blsk/LambdaCalculus/)

Chapter 3: λ -computability

1 Basic data and operations

Functions

Identity function

 $I = \lambda x.x$

Function composition

Example

Booleans and conditionals

Boolean values

Exercise: boolean operators

The following λ -term encodes a boolean operator. Which one?

λab.abF

Write terms for the other common operators.

Pairs and projections

Pair

 $\langle a, b \rangle = \lambda s \cdot s \cdot a \cdot b$

Projections

$$
\begin{array}{rcl}\n\pi_1 & \equiv & \lambda p.p \ (\lambda ab.a) & \quad \left(\equiv \lambda p.p \ \mathsf{T} \right) \\
\pi_2 & \equiv & \lambda p.p \ (\lambda ab.b) & \quad \left(\equiv \lambda p.p \ \mathsf{F} \right)\n\end{array}
$$

Example

$$
\pi_2 \langle A, B \rangle = (\lambda p. p (\lambda ab.b)) \langle A, B \rangle
$$

\n
$$
\rightarrow_{\beta} \langle A, B \rangle \lambda ab.b
$$

\n
$$
= (\lambda s. s A B) \lambda ab.b
$$

\n
$$
\rightarrow_{\beta} (\lambda ab.b) A B
$$

\n
$$
\rightarrow_{\beta} (\lambda b.b) B
$$

\n
$$
\rightarrow_{\beta} B
$$

Algebraic data types and pattern matching

The principle used for representing booleans can be generalized for representing any finite set, by using more parameters (for instance: { $\lambda abc.a, \lambda abc.b, \lambda abc.c$ } for a set of three elements). The principle used for representing pairs can be generalized to arbitrary tuples, by using more arguments (for instance: $\lambda x. xabc$ for a triple (a, b, c)).

Combinations of these can be used to represent any algebraic data type: we have a finite set of constructors, each of which contains a (possibly empty) tuple of parameters.

For instance, here is a definition of binary trees in caml (with integers at the leaves)

```
type tree =
  | L of int
  | N of tree * tree
```
We can encode such a tree following these shapes:

(k assumed non-negative) $L(k) \mapsto \lambda ab.a [k]$
 $N(t_1, t_2) \mapsto \lambda ab.b \ t_1 \ t_2$

Then pattern matching, as was the conditional, is just an application of the encoded term to the terms representing the various branches.

match 𝑡 **with** $| L(k)$ -> f $| N(x, y) \rightarrow g$

will be encoded as

 $t(\lambda k.f)(\lambda xy.g)$

(where the term f may contain occurrences of the variable k , and the term g may contain occurrences of the variables x and y)

Integers

For each $n \in \mathbb{N}$ we define a λ -term $[n]$

$$
\begin{array}{rcl} [0] & \equiv & | \\ [n+1] & \equiv & \langle F, [n] \rangle \end{array}
$$

Some basic operations

Exercise: integers

Summary of the definitions

$$
\begin{array}{rcl}\n[0] & \equiv & 1 & S & \equiv & \lambda x. \langle F, x \rangle & \langle a, b \rangle & \equiv & \lambda c. cab \\
[n+1] & \equiv & \langle F, [n] \rangle & P & \equiv & \lambda x. xF & T & \equiv & \lambda ab. a \\
\text{isZ} & \equiv & \lambda x. xT & F & \equiv & \lambda ab. b\n\end{array}
$$

Check the following equalities

$$
S[n] = \beta [n+1]
$$

\n
$$
P[n+1] = \beta [n]
$$

\n
$$
P[0] = \beta F
$$

\n
$$
isZ[0] = \beta T
$$

\n
$$
isZ[n+1] = \beta F
$$

Define a term add such that

add $[n] [m] = [n+m]$

Addition

We would like to write a recursive function

add $n \, m =$ if isZ n then m else add (P n) (S m)

Problem: finding a λ-term add this way consists in solving an equation

2 Fixpoints

Fixpoints for numeric functions

A fixpoint of a function f is an x such that

 $f(x) = x$

Finding such a fixpoint f means solving the equation $x = f(x)$ Numeric functions may have various numbers of fixpoints

Fixpoints for 𝜆**-calculus**

In the $\lambda\text{-calculus},\,t$ is a fixpoint of f if

 $f t =_{\beta} t$

Fixpoint theorem

Any λ -term f has a fixpoint

The fixpoint theorem guarantees that, in the λ -calculus, the equation $t =_{\beta} f t$ has always a solution

Church's fixpoint combinator

A term that builds fixpoints

$$
Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))
$$

First remark that

$$
Y f = (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))) f
$$

\n
$$
\rightarrow_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))
$$

The term $(\lambda x.f(xx))(\lambda x.f(xx))$, written Fix_f below, is a fixpoint of f. Indeed,

Fix_f =
$$
(\lambda x.f(xx))(\lambda x.f(xx))
$$

\n \rightarrow_{β} f $((\lambda x.f(xx))(\lambda x.f(xx)))$
\n= f Fix_f

For any λ -term f , the term Y f builds a fixpoint of f .

Turing's fixpoint combinator

Another term that builds fixpoints, even more directly.

$$
\begin{array}{rcl} \Theta & \equiv & AA \\ A & \equiv & \lambda xy.y(xxy) \end{array}
$$

Checking that $f(\Theta f) =_\beta \Theta f$

$$
\Theta f = (\lambda xy.y(xxy)) A f
$$

\n
$$
\rightarrow_{\beta} (\lambda y.y(AAy)) f
$$

\n
$$
= (\lambda y.y(\Theta y)) f
$$

\n
$$
\rightarrow_{\beta} f(\Theta f)
$$

For any $λ$ -term f , the term $Θ$ f *is* a fixpoint of f

Mutual recursion

Double fixpoint theorem

 $\forall f, g \exists a, b \quad a =_\beta f \ a \ b \quad \land \quad b =_\beta g \ a \ b$

Proof: define

 $d = \Theta (\lambda x. \langle f(\pi_1 x)(\pi_2 x), g(\pi_1 x)(\pi_2 x) \rangle)$ $a = \pi_1 d$ $b = \pi_2 d$

Then

$$
d \rightarrow^* \langle f(\pi_1 d)(\pi_2 d), g(\pi_1 d)(\pi_2 d) \rangle
$$

\n
$$
a = \pi_1 d \rightarrow^* f(\pi_1 d)(\pi_2 d) = f a b
$$

\n
$$
b = \pi_2 d \rightarrow^* g(\pi_1 d)(\pi_2 d) = g a b
$$

This can be extended to a n-ary fixpoint, for any n.

Back on the addition

add $n m =$ if isZ n then m else add (P n) (S m) add = λ nm.if isZ n then m else add (P n) (S m) add = $(\lambda fnm.$ if isZ *n* then *m* else f (P *n*) (S *m*)) add

We define add as a fixpoint with

add =
$$
\Theta(\lambda fnm
$$
 if isZ *n* then *m* else f (P *n*) (S *m*))

Exercise: Fibonacci sequence

Define a λ -term representing the Fibonacci function, defined by

$$
f(0) = 0\n f(1) = 1\n f(n+2) = f(n+1) + f(n)
$$

Exercise: paradoxical fixpoint?

We said that:

- $f: x \mapsto x + 1$ is function with zero fixpoint
- $F = \lambda x.S x$ is a λ -term, and therefore it has a fixpoint

How can these two facts both be true?

Exercise: Church integers (iterators)

Alternative representation for $[n]$

 $[n] \equiv \lambda f x . f^n$ x

Idea: [n] *takes as argument of function* f and returns a function that iterates n times f Show that $\lambda n f x.f(n f x)$ represents the successor function Find terms representing addition, multiplication, and predecessor

Exercise: Curry's Y-combinator

Another fixpoint combinator

$$
Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))
$$

Check that for any term t we have

$$
Y \ t =_{\beta} \ t \ (Y \ t)
$$

Do we also have $Y t \rightarrow_{\beta}^* t (Y t)$?

3 Decidability

New version presented live, with $λ$ *-terms encoded by their AST.*

de Bruijn notation: use numbers instead of variable names

Replace each variable occurrence with the number of λ between the occurrence and its binder

 λ . λ .0 1 ((λ .20) 0)

What we gain: the need for variable renamings disappears. Also, the syntax of terms will be easier to represent as a λ -encoded data structure

Translations between named and nameless variables

For any named closed term t , write $\llbracket t \rrbracket$ its nameless version. Generalization to term with free variables: let ℓ be a list of variable names that contains all the free variables of t, define $\llbracket t \rrbracket_{\ell}$ the translation where each free variable x of t is associated to the index at which x appears in t .

$$
\begin{array}{rcl}\n\llbracket x \rrbracket_{\ell} & = & \text{index_of}(x, \ell) \\
\llbracket t \ u \rrbracket_{\ell} & = & \llbracket t \rrbracket_{\ell} \llbracket u \rrbracket_{\ell} \\
\llbracket \lambda x. t \rrbracket_{\ell} & = & \lambda. \llbracket t \rrbracket_{x : \ell}\n\end{array}
$$

(assume index of is a function that returns the index at which the name x appears in the list ℓ).

Reverse: for any nameless closed term t , write $|t|$ its named version. Generalization to term with free variables: let ℓ be a list of variable names that is long enough to account for every indices in t , define $\|t\|_{\ell}$ the translation where each free index of t is associated to the element at corresponding index of ℓ .

$$
\begin{array}{rcl}\n(k)_{\ell} & = & \text{nth}(k, \ell) \\
\langle [t \ u] \rangle_{\ell} & = & \langle [t] \rangle_{\ell} \ (|u] \rangle_{\ell} \\
(\lambda.t)_{\ell} & = & \lambda x. \langle [t] \rangle_{x: \ell} \quad \text{for } x \text{ a fresh variable name}\n\end{array}
$$

(assume nth is a function that returns the element at index k in the list ℓ).

Encoding the abstract syntax of nameless λ -terms.

Nameless terms can be represented with the following three constructors.

type term = | Var **of** int | App **of** term * term | Abs **of** term

Representation of such a data structure using λ -terms:

$$
\begin{aligned}\n[k] &= \lambda abc.a[k] \\
[t u] &= \lambda abc.b[t][u] \\
[\lambda.t] &= \lambda abc.c[t]\n\end{aligned}
$$

(note: $[k]$ on the left of the first equation is the encoding of a λ -term made of the de Bruijn index k , defined by the equation, whereas $[k]$ on the right of the same equation is the encoding of the naturel number k , as proposed at the beginning of the chapter)

Encoding the abstract syntax of named λ -terms.

One obtains an encoding of usual, named λ -terms by composing the translation to nameless representation with the previous translation. Here is a set of combined equations:

$$
[x]_{\ell} = \lambda abc.a \left[index_of(x, \ell) \right]
$$

\n
$$
[t u]_{\ell} = \lambda abc.b [t]_{\ell} [u]_{\ell}
$$

\n
$$
[\lambda x.t]_{\ell} = \lambda abc.c [t]_{x:\ell}
$$

(again, [index_of(x, ℓ)] is the encoding of a natural number as defined at the beginning of the chapter)

Self-interpreter

Using the previous term representation, one can define an interpreter of the λ -calculus, in the λ calculus. Such a function can be called a *self-interpreter*, and also corresponds to the concept of *universal machine* that you will hear of again in the computability course. This interpreter is a term e such that for any term t and any list ℓ we have

$$
e[t]_{\ell} \ell =_{\beta} t
$$

(this assumes that the list ℓ can also encoded as a λ -term, which is left as an exercise)

For such an interpreter, we want the following equations:

$$
e[x]_f \ell = e(\lambda abc.a [k]) \ell = nth(k, \ell)
$$

\n
$$
e[t u]_f \ell = e(\lambda abc.bb [t]_f [u]_f) \ell = (e[t]_f \ell) (e[t]_f \ell)
$$

\n
$$
e[\lambda x.t]_f \ell = e(\lambda abc.c [t]_{x:\ell}) \ell = \lambda x.(e[t]_{:\ell} x : \ell)
$$

Thus we propose the following term:

$$
e = Y (\lambda e.\lambda t.\lambda \ell. t (\lambda k. nth(k, \ell))
$$

\n
$$
(\lambda tu.(e t \ell) (e u \ell))
$$

\n
$$
(\lambda t.\lambda x.e t (x : \ell)))
$$

Correctness of the self-interpreter

Assuming that lists of names ℓ can be encoded as λ -terms as well as the two functions index of and nth, we prove that for any term t and any list ℓ containing (at least) the free variables of t :

$$
e[t]_{\ell} \ell =_{\beta} t
$$

Write $e = Y e'$. We have in one step

$$
e = Y e' \rightarrow (\lambda x. e'(xx))(\lambda x. e'(xx)) = e''
$$

where the obtained term e'' is the fixpoint of e' produced by Y. Since all encodings share a common structure, first remark that

$$
e[t]_{\ell} \ell = Y e'[t]_{\ell} \ell
$$

\n
$$
\rightarrow (\lambda x. e'(xx))(\lambda x. e'(xx)) [t]_{\ell} \ell
$$

\n
$$
= e'' [t]_{\ell} \ell
$$

\n
$$
\rightarrow e' e'' [t]_{\ell} \ell
$$

\n
$$
\rightarrow \{t\}_{\ell} e_1 e_2 e_3
$$

where

$$
e_1 = \lambda k.nth(k, \ell)
$$

\n
$$
e_2 = \lambda tu.(e'' t \ell) (e'' u \ell)
$$

\n
$$
e_3 = \lambda t.\lambda x.e'' t (x : \ell)
$$

Now prove the result by induction on t :

• Case of a variable x (assumed in ℓ):

$$
e [x]_{\ell} \ell \rightarrow [x]_{\ell} e_1 e_2 e_3
$$

= $(\lambda abc.a [index_of(x, \ell)]) e_1 e_2 e_3$
 $\rightarrow^3 e_1 [index_of(x, \ell)]$
= $(\lambda k.nth(k, \ell)) [index_of(x, \ell)]$
= $nth([index_of(x, \ell)], \ell)$

The specifications of nth and index of indeed require that nth([index of(x, ℓ)], ℓ) is equal to x (when x is in ℓ).

• Case of an application t u :

$$
e[t u]_{\ell} \ell \rightarrow [t u]_{\ell} e_1 e_2 e_3
$$

\n
$$
= (\lambda abc.b [t]_{\ell} [u]_{\ell}) e_1 e_2 e_3
$$

\n
$$
\rightarrow^3 e_2 [t]_{\ell} [u]_{\ell}
$$

\n
$$
= (\lambda tu.(e'' t \ell) (e'' u \ell)) [t]_{\ell} [u]_{\ell}
$$

\n
$$
\rightarrow^2 (e'' [t]_{\ell} \ell) (e'' [u]_{\ell} \ell)
$$

\n
$$
=_{\beta} t u
$$
 by induction hypotheses

• Case of an abstraction $\lambda x.t$:

$$
e [\lambda x.t]_{\ell} \ell \rightarrow [\lambda x.t]_{\ell} e_1 e_2 e_3
$$

\n
$$
= (\lambda abc.c [t]_{x:\ell}) e_1 e_2 e_3
$$

\n
$$
\rightarrow^3 e_3 [t]_{x:\ell}
$$

\n
$$
= (\lambda t.\lambda x.e'' t (x : \ell)) [t]_{x:\ell}
$$

\n
$$
\rightarrow \lambda x.e'' [t]_{x:\ell} (x : \ell) \qquad \text{(note: } x \notin \text{fv}([t]_{x:\ell}))
$$

\n
$$
=_{\beta} \lambda x.t \qquad \text{by induction hypothesis}
$$

Second fixpoint theorem

$$
\forall f \; \exists t \quad f \; [t] =_{\beta} t
$$

Proof of the second fixpoint theorem

First remark that one could write two terms A and N such that

$$
A[t][u] =_{\beta} [t u]
$$

$$
N[t] =_{\beta} [t]]
$$

(A is simply $\lambda tu.\lambda abc.b~t~u$, whereas N is defined as the fixpoint of a function defined by pattern matching on the representation $[t]$ of t)

Then define

$$
w = \lambda x.f (A x (N x))
$$

$$
z = w [w]
$$

Then z is a fixpoint for f .

$$
z \equiv w [w] =_{\beta} f (A [w] (N [w]))
$$

$$
=_{\beta} f (A [w] [[w]])
$$

$$
=_{\beta} f [w [w]]
$$

$$
= f [z]
$$

Scott's undecidability theorem

Theorem

- 1. any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not effectively separable
- 2. no non-trivial set $A \subseteq \Lambda$ closed by β -equality can be effectively characterized

Denitions

- *E* is closed by β -equality if $\forall x, y \in \Lambda \; x \in E \land x =_{\beta} y \implies y \in E$
- *E* is non-trivial if there are $x \in E$ and $y \notin E$
- A and B are effectively separable if there is an effectively characterized set C such that $t \in A \implies$ $t \in C$ and $t \in B \implies t \notin C$
- C is effectively characterized if there is a λ -term f such that $f \, t =_\beta T$ for any $t \in C$ and $f \, t =_\beta F$ for any $t \notin C$

(note: in the definition of "effectively characterized" it is of critical importance that the application of the λ -term f to *any* λ -term t is normalizable)

Proof of Scott's theorem

Any two non-empty sets $A, B \subseteq \Lambda$ *closed by* β -equality are not effectively separable

Assume there is a separating set C such that $A \subseteq C$ and $B \cap C = \emptyset$, characterized by a λ -term f such that

$$
t \in C \implies f[t] =_{\beta} T
$$

$$
t \notin C \implies f[t] =_{\beta} F
$$

Since *A* and *B* are not empty, we can find two terms $a \in A$ and $b \in B$. Define

$$
g = \lambda x
$$
.*if* f x then b else a

Then

$$
t \in C \implies g[t] =_\beta b
$$

$$
t \notin C \implies g[t] =_\beta a
$$

From the second fixpoint theorem, there is z such that $g [z] = z$

$$
z \in C \implies z =_{\beta} g [z] =_{\beta} b \in B \implies z \notin C
$$

$$
z \notin C \implies z =_{\beta} g [z] =_{\beta} a \in A \implies z \in C
$$

Contradiction!

Undecidability of β -equality

No algorithm can decide whether two arbitrary λ -terms are β -equal Assume f is a λ -term such that, for any a and b, f [a] [b] equals to [1] if $a =_\beta b$ and to [0] otherwise Define $A = \{x \mid x =_\beta a\}$

- by definition, A is closed by β -equality
- A is not empty, since it contains a
- $\Lambda \setminus A$ is not empty, because:
	- if *a* has a normal form, then $\Omega \notin A$
	- if *a* has no normal form, then $\lambda x.x \notin A$

By Scott's theorem, the set A is not recursive

On the other hand, $f [a]$ computes the characteristic function of A *Contradiction*.

Exercise: halting problem for the λ **-calculus**

No algorithm can decide whether an arbitrary λ -term has a normal form

Undecidability of the optimal strategy

Strategy: function $F : \Lambda \rightarrow \Lambda$ such that

$$
\forall t \in \Lambda \quad t \longrightarrow_{\beta} F(t)
$$

Optimal strategy: strategy that always picks a shortest path to the normal form (if there is a normal form)

There is no computable optimal strategy

Undecidability of the optimal strategy: idea

Consider the set

$$
t_n = (\lambda x. x \mathsf{E} x) (\lambda y. y[n](\mathsf{II}))
$$

of λ -terms, where E enumerates λ -terms with at most one free variable a

Assuming E is already in normal form, for each n we have to choose between:

- reducing $t_n \rightarrow \beta (\lambda y. y[n](\Pi)) \mathsf{E}(\lambda y. y[n](\Pi))$
- reducing $t_n \rightarrow_\beta (\lambda x. x \in x) (\lambda y. y[n])$

However, the best choice differs depending on the normal form of $E[n]$

Optimal strategy: first case

If E $[n] \rightarrow_{\beta}^{*} \lambda xyz.z$ in k steps then

$$
(\lambda y. y[n](\text{II})) \to (\lambda y. y[n](\text{II})) \rightarrow \beta \quad \text{E}[n] \text{ (II)} (\lambda y. y[n](\text{II})) \n\rightarrow \beta \quad (\lambda xyz. z) \text{ (II)} (\lambda y. y[n](\text{II})) \n\rightarrow \beta \quad \lambda z. z
$$

optimally in $k + 3$ steps and

$$
(\lambda x. xEx) (\lambda y. y[n]l) \rightarrow_{\beta} (\lambda y. y[n]l) E (\lambda y. y[n]l)
$$

\n
$$
\rightarrow_{\beta} E[n] (\lambda y. y[n]l)
$$

\n
$$
\rightarrow_{\beta}^* (\lambda xyz. z) (\lambda y. y[n]l)
$$

\n
$$
\rightarrow_{\beta}^2 \lambda z. z
$$

optimally in $k + 4$ steps

Optimal strategy: second case

If E $[n] \rightarrow_{\beta}^* a$ in k steps then

$$
(\lambda y. y[n](\text{II})) \to (\lambda y. y[n](\text{II})) \longrightarrow_{\beta} \quad \text{E}[n] \text{ (II)} (\lambda y. y[n](\text{II}))
$$

$$
\longrightarrow_{\beta}^{*} \quad a \text{ (II)} (\lambda y. y[n](\text{II}))
$$

$$
\longrightarrow_{\beta}^{2} \quad a \text{ I} (\lambda y. y[n](\text{II}))
$$

optimally in $k + 3$ steps and

$$
(\lambda x. xEx) (\lambda y. y[n]l) \rightarrow_{\beta} (\lambda y. y[n]l) E (\lambda y. y[n]l)
$$

\n
$$
\rightarrow_{\beta} E[n] (\lambda y. y[n]l)
$$

\n
$$
\rightarrow_{\beta}^{*} a (\lambda y. y[n]l)
$$

optimally in $k + 2$ steps

Optimal strategy: conclusion

$$
t_n = (\lambda x. x \, \text{Ex}) \, (\lambda y. y[n](\text{II}))
$$

If F is an optimal strategy, then

- if E $[n] \rightarrow_{\beta} \lambda xyz.z$ then $F(t_n) = (\lambda y.y[n](\Pi))$ E $(\lambda y.y[n](\Pi))$, and
- if E $[n] \rightarrow_{\beta}^* a$ then $F(t_n) = (\lambda x. x \text{E} x) (\lambda y. y[n])$

An optimal strategy thus separates

$$
\{n \mid E[n] \rightarrow_{\beta}^{*} \lambda xyz.z\} \quad \text{and} \quad \{n \mid E[n] \rightarrow_{\beta}^{*} a\}
$$

However, these two sets are not recursively separable, since by Scott's theorem

{ $t | t \rightarrow^*_{\beta} \lambda xyz.z$ } and { $t | t \rightarrow^*_{\beta} a$ }

are not recursively separable.

4 The 𝜆**-calculus is a model of computable functions**

Bonus section, encoding general recursive function into λ-calculus.

Definability

A mathematical function $\varphi : \mathbb{N}^p \to \mathbb{N}$ is λ -definable if there is a λ -term $f \in \Lambda$ such that

 $\forall n_1, \ldots, n_p \in \mathbb{N}, \quad f[n_1] \ldots [n_p] =_\beta [\varphi(n_1, \ldots, n_p)]$

By Church-Rosser property, we could also have given the condition

$$
\forall n_1, \dots, n_p \in \mathbb{N}, \quad f[n_1] \dots [n_p] \rightarrow_{\beta}^* [\varphi(n_1, \dots, n_p)]
$$

Property: the λ-definable functions are exactly the recursive functions

Initial recursiuve functions

Zero $Z(n) = 0$ • $Z = \lambda x.[0]$

Successor $S(n) = n + 1$

•
$$
S = \lambda x. \langle F, x \rangle
$$

Projection U^p_i $\sigma_i^p(n_0, ..., n_p) = n_i$ with $0 \leq i \leq p_i$

• $U_i^p = \lambda x_0 ... x_p.x_i$

Composition of recursive functions

If F , G_1 , ..., G_m are recursive then the function H defined by

$$
H(\vec{n}) = F(G_1(\vec{n}), \ldots, G_m(\vec{n}))
$$

is recursive

Assume F , G_1 , ..., G_m are defined by f , g_1 , ..., g_m then H can be defined by

$$
h = \lambda \vec{x}. F\left(G_1 \vec{x}\right) \dots \left(G_m \vec{x}\right)
$$

Primitive recursion

If F and G are recursive then the function H defined by

$$
H(0, \vec{n}) = F(\vec{n})
$$

$$
H(k + 1, \vec{n}) = G(H(k, \vec{n}), k, \vec{n})
$$

is recursive

Assume F and G are defined by f and g , we are looking for an h such that

$$
h = \lambda x \vec{y}
$$
.
if isZ x then f \vec{y} else g $(h (Px) \vec{y}) (Px) \vec{y}$

Fixpoint theorem: such a term h exists

Minimisation

If F is recursive and is such that

$$
\forall \vec{n} \; \exists m \; F(\vec{n}, m) = 0
$$

then the function M defined by

$$
M(\vec{n})
$$
 = the smallest $m \in \mathbb{N}$ such that $F(\vec{n}, m) = 0$

is recursive

Assume F is defined by f , then define

$$
m = \lambda \vec{x}
$$
. ($\Theta (\lambda hy \cdot \text{if isZ } (\vec{f} \cdot \vec{x}y)$ then *y* else *h*(S*y*)) [0])

Summary

We encoded in the λ -calculus:

- the initial functions Z , S and U_i^p j
- function composition
- primitive recursion
- minimisation

Therefore, any recursive function is λ -definable *The* 𝜆*-calculus is Turing-complete*

5 Decidability, traditional presentation

The historical path, encoding λ-terms as numbers.

Encoding λ -terms using numbers

Assume a (computable and) injective function $\varphi : \mathbb{N}^2 \to \mathbb{N}$, for instance $\varphi(x, y) = 2^x(2y + 1) - 1$ Assign numbers to all variables: $\{x_0, x_1, x_2, ...\}$

We deduce a function $* : \Lambda \to \mathbb{N}$ assigning a unique number to each λ -term

$$
\begin{array}{rcl}\n\ast x_i & = & \varphi(0, i) \\
\ast(t u) & = & \varphi(1, \varphi(\ast t, \ast u)) \\
\ast(\lambda x_i.t) & = & \varphi(2, \varphi(i, \ast t))\n\end{array}
$$

Encoding of a λ -term t : the λ -term t' representing the number n representing the encoded λ -term t

 $[t] = [*t]$

Remark: this is a new encoding, thus all encoding-dependent theorems have to be proved again.

Enumeration theorem (admitted)

```
There is a \lambda-term E such that for any closed \lambda-term t, E [t] \rightarrow_{\beta}^* t
```
This is the equivalent of the self-interpreter in the previous presentation. The proof however is far more technical.

Proof of the second fixpoint theorem

The functions φ_A and φ_N defined by

$$
\varphi_A(\#t, \#u) = \#(t \ u)
$$

$$
\varphi_N(\#t) = \#[t]
$$

are recursive. They are thus defined by λ -terms A and N such that

$$
A[t][u] =_{\beta} [t u] \nN[t] =_{\beta} [[t]]
$$

Define

$$
w = \lambda x.f (A x (N x))
$$

$$
z = w [w]
$$

Then z is a fixpoint for f .

$$
z \equiv w [w] =_{\beta} f (A [w] (N [w]))
$$

$$
=_{\beta} f (A [w] [[w]])
$$

$$
=_{\beta} f [w [w]] = f [z]
$$

Scott's undecidability theorem (stated using general vocabulary of recursive functions) Theorem

- 1. any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not recursively separable
- 2. any non-trivial set $A \subseteq \Lambda$ closed by β -equality is not recursive

Denitions

- *E* is closed by β -equality if $\forall x, y \in \Lambda \; x \in E \land x =_{\beta} y \implies y \in E$
- *E* is non-trivial if there are $x \in E$ and $y \notin E$
- A and B are recursively separable if there is a recursive set C such that $A \subseteq C$ and $B \cap C = \emptyset$
- \bullet *C* is recursive if its characteristic function is recursive

Proof of Scott's theorem

Any two non-empty sets $A, B \subseteq \Lambda$ *closed by* β -equality are not recursively separable

Assume there is a recursive set C such that $A \subseteq C$ and $B \cap C = \emptyset$ Its characteristic function is realized by a λ -term f such that

$$
t \in C \implies f[t] =_{\beta} [1]
$$

$$
t \notin C \implies f[t] =_{\beta} [0]
$$

Since A and B are not empty, we can find two terms $a \in A$ and $b \in B$. Define

$$
g = \lambda x
$$
.if isZ (*f* x) then *b* else *a*

Then

$$
t \in C \implies g[t] =_\beta b
$$

$$
t \notin C \implies g[t] =_\beta a
$$

From the second fixpoint theorem, there is z such that $g[z] = z$

$$
z \in C \implies z =_{\beta} g [z] =_{\beta} b \in B \implies z \notin C
$$

$$
z \notin C \implies z =_{\beta} g [z] =_{\beta} a \in A \implies z \in C
$$

Contradiction!

Undecidability results...

are proved exactly as in the previous section, now that Scott's theorem is established for this other representation of λ -terms.

Homework

- 1. Prove that there exists no λ -term h such that $h[t] = T$ for any $t \in \Lambda$ with a normal form and $h[t] = F$ for any $t \in \Lambda$ with no normal form.
- 2. Using the encoding of algebraic datatypes, and one of the already defined encodings of numbers, propose an encoding of lists, and of the nth function.
- 3. In your encoding, prove that nth $k \ell = \text{nth } (k + 1) (t : \ell)$.