
Lambda-calculus and programming language semantics
Thibaut Balabonski @ UPSay
Fall 2023
https://www.lri.fr/∼blsk/LambdaCalculus/

Chapter 3: �-computability
1 Basic data and operations

Functions
Identity function

I ≡ �x.x

Function composition
g ◦ f ≡ �x.g(f (x))

Example
I ◦ I ≡ �x.I(Ix)

≡ �x.(�y.y) ((�z.z) x)
→� �x.(�z.z) x
→� �x.x

Booleans and conditionals
Boolean values

T ≡ �xy.x
F ≡ �xy.y

Conditional expression
if c then a else b ≡ c a b

Example
if T then a else b ≡ T a b

≡ (�xy.x) a b
→� (�y.a) b
→� a

Exercise: boolean operators
The following �-term encodes a boolean operator. Which one?

�ab.abF

Write terms for the other common operators.

Pairs and projections
Pair

⟨a, b⟩ ≡ �s.s a b

Projections
�1 ≡ �p.p (�ab.a) (≡ �p.p T)
�2 ≡ �p.p (�ab.b) (≡ �p.p F)

1

https://www.lri.fr/~blsk/LambdaCalculus/


Example
�2 ⟨A, B⟩ ≡ (�p.p (�ab.b)) ⟨A, B⟩

→� ⟨A, B⟩ �ab.b
≡ (�s.s A B) �ab.b)
→� (�ab.b) A B
→� (�b.b) B
→� B

Algebraic data types and pattern matching
The principle used for representing booleans can be generalized for representing any �nite set, by

using more parameters (for instance: {�abc.a, �abc.b, �abc.c} for a set of three elements). The principle
used for representing pairs can be generalized to arbitrary tuples, by using more arguments (for instance:
�x.xabc for a triple (a, b, c)).

Combinations of these can be used to represent any algebraic data type: we have a �nite set of
constructors, each of which contains a (possibly empty) tuple of parameters.

For instance, here is a de�nition of binary trees in caml (with integers at the leaves)

type tree =
| L of int
| N of tree * tree

We can encode such a tree following these shapes:

L(k) ↦ �ab.a [k] (k assumed non-negative)
N(t1, t2) ↦ �ab.b t1 t2

Then pattern matching, as was the conditional, is just an application of the encoded term to the terms
representing the various branches.

match t with
| L(k) -> f
| N(x, y) -> g

will be encoded as
t (�k.f ) (�xy.g)

(where the term f may contain occurrences of the variable k, and the term g may contain occurrences
of the variables x and y)

Integers
For each n ∈ ℕ we de�ne a �-term [n]

[0] ≡ I
[n + 1] ≡ ⟨F, [n]⟩

Some basic operations
S ≡ �x.⟨F, x⟩ successor
P ≡ �x.xF predecessor

isZ ≡ �x.xT zero?

Exercise: integers
Summary of the de�nitions

[0] ≡ I S ≡ �x.⟨F, x⟩ ⟨a, b⟩ ≡ �c.cab
[n + 1] ≡ ⟨F, [n]⟩ P ≡ �x.xF T ≡ �ab.a

isZ ≡ �x.xT F ≡ �ab.b

2



Check the following equalities

S [n] =� [n + 1]
P [n + 1] =� [n]

P [0] =� F
isZ [0] =� T

isZ [n + 1] =� F

De�ne a term add such that
add [n] [m] = [n +m]

Addition
We would like to write a recursive function

add n m = if isZ n then m else add (P n) (S m)

Problem: �nding a �-term add this way consists in solving an equation

2 Fixpoints

Fixpoints for numeric functions
A �xpoint of a function f is an x such that

f (x) = x

Finding such a �xpoint f means solving the equation x = f (x)
Numeric functions may have various numbers of �xpoints

x ↦ x ∞
x ↦ x + 1 none
x ↦ x2 two (0 and 1)

f ∶ [0; 1] → [0; 1] at least one if continuous

Fixpoints for �-calculus
In the �-calculus, t is a �xpoint of f if

f t =� t

Fixpoint theorem

Any �-term f has a �xpoint

The �xpoint theorem guarantees that, in the �-calculus, the equation t =� f t has always a solution

Church’s fixpoint combinator
A term that builds �xpoints

Y ≡ �f .(�x.f (xx))(�x.f (xx))

First remark that
Y f ≡ (�f .(�x.f (xx))(�x.f (xx))) f

→� (�x.f (xx))(�x.f (xx))
The term (�x.f (xx))(�x.f (xx)), written Fixf below, is a �xpoint of f .

Indeed,
Fixf ≡ (�x.f (xx))(�x.f (xx))

→� f ((�x.f (xx))(�x.f (xx)))
≡ f Fixf

For any �-term f , the term Y f builds a �xpoint of f .

3



Turing’s fixpoint combinator
Another term that builds �xpoints, even more directly.

Θ ≡ A A
A ≡ �xy.y(xxy)

Checking that f (Θf ) =� Θf
Θ f ≡ (�xy.y(xxy)) A f

→� (�y.y(AAy)) f
≡ (�y.y(Θy)) f
→� f (Θf )

For any �-term f , the term Θ f is a �xpoint of f

Mutual recursion
Double �xpoint theorem

∀f , g ∃a, b a =� f a b ∧ b =� g a b

Proof: de�ne
d ≡ Θ (�x.⟨f (�1x) (�2x), g (�1x) (�2x)⟩)
a ≡ �1 d
b ≡ �2 d

Then
d →∗ ⟨f (�1d) (�2d), g (�1d) (�2d)⟩

a ≡ �1d →∗ f (�1d) (�2d) ≡ f a b
b ≡ �2d →∗ g (�1d) (�2d) ≡ g a b

This can be extended to a n-ary �xpoint, for any n.

Back on the addition

add n m = if isZ n then m else add (P n) (S m)
add = �nm.if isZ n then m else add (P n) (S m)
add = (�f nm.if isZ n then m else f (P n) (S m)) add

We de�ne add as a �xpoint with

add ≡ Θ (�f nm.if isZ n then m else f (P n) (S m))

Exercise: Fibonacci sequence
De�ne a �-term representing the Fibonacci function, de�ned by

f (0) = 0
f (1) = 1

f (n + 2) = f (n + 1) + f (n)

Exercise: paradoxical fixpoint?
We said that:

• f ∶ x ↦ x + 1 is function with zero �xpoint

• F = �x.S x is a �-term, and therefore it has a �xpoint

How can these two facts both be true?

4



Exercise: Church integers (iterators)
Alternative representation for [n]

[n] ≡ �f x.f n x
Idea: [n] takes as argument of function f and returns a function that iterates n times f

Show that �nf x.f (nf x) represents the successor function
Find terms representing addition, multiplication, and predecessor

Exercise: Curry’s Y-combinator
Another �xpoint combinator

Y ≡ �f .(�x.f (xx))(�x.f (xx))

Check that for any term t we have
Y t =� t (Y t)

Do we also have Y t →∗
� t (Y t) ?

3 Decidability

New version presented live, with �-terms encoded by their AST.

de Bruijn notation: use numbers instead of variable names

�x.�y.(y x ((�y.xy) y))

�x

�y

@

@
y x

@

�y

@
x y

y

Replace each variable occurrence with the number of � between the occurrence and its binder

�.�.0 1 ((�.20) 0)

What we gain: the need for variable renamings disappears. Also, the syntax of terms will be easier to
represent as a �-encoded data structure

Translations between named and nameless variables
For any named closed term t , write JtK its nameless version. Generalization to term with free vari-

ables: let � be a list of variable names that contains all the free variables of t , de�ne JtK� the translation
where each free variable x of t is associated to the index at which x appears in t .

JxK� = index of(x, � )
Jt uK� = JtK� JuK�

J�x.tK� = �.JtKx∶�
(assume index of is a function that returns the index at which the name x appears in the list � ).

Reverse: for any nameless closed term t , write LtM its named version. Generalization to term with
free variables: let � be a list of variable names that is long enough to account for every indices in t , de�ne
LtM� the translation where each free index of t is associated to the element at corresponding index of � .

LkM� = nth(k, � )
Lt uM� = LtM� LuM�
L�.tM� = �x.LtMx∶� for x a fresh variable name

(assume nth is a function that returns the element at index k in the list � ).

5



Encoding the abstract syntax of nameless �-terms.
Nameless terms can be represented with the following three constructors.

type term =
| Var of int
| App of term * term
| Abs of term

Representation of such a data structure using �-terms:

[k] = �abc.a [k]
[t u] = �abc.b [t] [u]
[�.t] = �abc.c [t]

(note: [k] on the le� of the �rst equation is the encoding of a �-term made of the de Bruijn index k,
de�ned by the equation, whereas [k] on the right of the same equation is the encoding of the naturel
number k, as proposed at the beginning of the chapter)

Encoding the abstract syntax of named �-terms.
One obtains an encoding of usual, named �-terms by composing the translation to nameless repre-

sentation with the previous translation. Here is a set of combined equations:

[x]� = �abc.a [index of(x, � )]
[t u]� = �abc.b [t]� [u]�
[�x.t]� = �abc.c [t]x∶�

(again, [index of(x, � )] is the encoding of a natural number as de�ned at the beginning of the chapter)

Self-interpreter
Using the previous term representation, one can de�ne an interpreter of the �-calculus, in the �-

calculus. Such a function can be called a self-interpreter, and also corresponds to the concept of universal
machine that you will hear of again in the computability course. This interpreter is a term e such that
for any term t and any list � we have

e [t]� � =� t

(this assumes that the list � can also encoded as a �-term, which is le� as an exercise)
For such an interpreter, we want the following equations:

e [x]� � = e (�abc.a [k]) � = nth(k, � )
e [t u]� � = e (�abc.bb [t]� [u]� ) � = (e [t]� � ) (e [t]� � )
e [�x.t]� � = e (�abc.c [t]x∶� ) � = �x.(e [t]∶� x ∶ � )

Thus we propose the following term:

e = Y (�e.�t.�� . t (�k.nth(k, � ))
(�tu.(e t � ) (e u � ))
(�t.�x.e t (x ∶ � )))

Correctness of the self-interpreter
Assuming that lists of names � can be encoded as �-terms as well as the two functions index of and

nth, we prove that for any term t and any list � containing (at least) the free variables of t :

e [t]� � =� t

Write e = Y e′. We have in one step

e = Y e′ → (�x.e′(xx))(�x.e′(xx)) = e′′

6



where the obtained term e′′ is the �xpoint of e′ produced by Y .
Since all encodings share a common structure, �rst remark that

e [t]� � = Y e′ [t]� �
→ (�x.e′(xx))(�x.e′(xx)) [t]� �
= e′′ [t]� �
→ e′ e′′ [t]� �
→3 [t]� e1 e2 e3

where
e1 = �k.nth(k, � )
e2 = �tu.(e′′ t � ) (e′′ u � )
e3 = �t.�x.e′′ t (x ∶ � )

Now prove the result by induction on t :

• Case of a variable x (assumed in � ):

e [x]� � → [x]� e1 e2 e3
= (�abc.a [index of(x, � )]) e1 e2 e3
→3 e1 [index of(x, � )]
= (�k.nth(k, � )) [index of(x, � )]
= nth([index of(x, � )], � )

The speci�cations of nth and index of indeed require that nth([index of(x, � )], � ) is equal to x
(when x is in � ).

• Case of an application t u:

e [t u]� � → [t u]� e1 e2 e3
= (�abc.b [t]� [u]� ) e1 e2 e3
→3 e2 [t]� [u]�
= (�tu.(e′′ t � ) (e′′ u � )) [t]� [u]�
→2 (e′′ [t]� � ) (e′′ [u]� � )
=� t u by induction hypotheses

• Case of an abstraction �x.t :

e [�x.t]� � → [�x.t]� e1 e2 e3
= (�abc.c [t]x∶� ) e1 e2 e3
→3 e3 [t]x∶�
= (�t.�x.e′′ t (x ∶ � )) [t]x∶�
→ �x.e′′ [t]x∶� (x ∶ � ) (note: x ∉ fv([t]x∶� ))
=� �x.t by induction hypothesis

Second fixpoint theorem

∀f ∃t f [t] =� t

Proof of the second fixpoint theorem
First remark that one could write two terms A and N such that

A [t] [u] =� [t u]
N [t] =� [[t]]

(A is simply �tu.�abc.b t u, whereasN is de�ned as the �xpoint of a function de�ned by patternmatching
on the representation [t] of t)

7



Then de�ne
w ≡ �x.f (A x (N x))
z ≡ w [w]

Then z is a �xpoint for f .

z ≡ w [w] =� f (A [w] (N [w]))
=� f (A [w] [[w]])
=� f [w [w]] ≡ f [z]

Scott’s undecidability theorem
Theorem

1. any two non-empty sets A, B ⊆ Λ closed by �-equality are not e�ectively separable

2. no non-trivial set A ⊆ Λ closed by �-equality can be e�ectively characterized

De�nitions

• E is closed by �-equality if ∀x, y ∈ Λ x ∈ E ∧ x =� y ⟹ y ∈ E

• E is non-trivial if there are x ∈ E and y ∉ E

• A and B are e�ectively separable if there is an e�ectively characterized set C such that t ∈ A ⟹
t ∈ C and t ∈ B ⟹ t ∉ C

• C is e�ectively characterized if there is a �-term f such that f t =� T for any t ∈ C and f t =� F
for any t ∉ C

(note: in the de�nition of “e�ectively characterized” it is of critical importance that the application of
the �-term f to any �-term t is normalizable)

Proof of Scott’s theorem
Any two non-empty sets A, B ⊆ Λ closed by �-equality are not e�ectively separable
Assume there is a separating set C such that A ⊆ C and B ∩ C = ∅, characterized by a �-term f such

that
t ∈ C ⟹ f [t] =� T
t ∉ C ⟹ f [t] =� F

Since A and B are not empty, we can �nd two terms a ∈ A and b ∈ B. De�ne

g ≡ �x.if f x then b else a

Then
t ∈ C ⟹ g [t] =� b
t ∉ C ⟹ g [t] =� a

From the second �xpoint theorem, there is z such that g [z] = z

z ∈ C ⟹ z =� g [z] =� b ∈ B ⟹ z ∉ C
z ∉ C ⟹ z =� g [z] =� a ∈ A ⟹ z ∈ C

Contradiction!

8



Undecidability of �-equality
No algorithm can decide whether two arbitrary �-terms are �-equal
Assume f is a �-term such that, for any a and b, f [a] [b] equals to [1] if a =� b and to [0] otherwise
De�ne A = {x ∣ x =� a}

• by de�nition, A is closed by �-equality

• A is not empty, since it contains a

• Λ ⧵ A is not empty, because:

– if a has a normal form, then Ω ∉ A
– if a has no normal form, then �x.x ∉ A

By Scott’s theorem, the set A is not recursive
On the other hand, f [a] computes the characteristic function of A Contradiction.

Exercise: halting problem for the �-calculus
No algorithm can decide whether an arbitrary �-term has a normal form

Undecidability of the optimal strategy
Strategy: function F ∶ Λ→ Λ such that

∀t ∈ Λ t →� F (t)

Optimal strategy: strategy that always picks a shortest path to the normal form (if there is a normal
form)

There is no computable optimal strategy

Undecidability of the optimal strategy: idea
Consider the set

tn ≡ (�x.xEx) (�y.y[n](II))

of �-terms, where E enumerates �-terms with at most one free variable a
Assuming E is already in normal form, for each n we have to choose between:

• reducing tn →� (�y.y[n](II)) E (�y.y[n](II))

• reducing tn →� (�x.xEx) (�y.y[n]I)

However, the best choice di�ers depending on the normal form of E [n]

Optimal strategy: first case
If E [n]→∗

� �xyz.z in k steps then

(�y.y[n](II)) E (�y.y[n](II)) →� E [n] (II) (�y.y[n](II))
→∗

� (�xyz.z) (II) (�y.y[n](II))
→2

� �z.z

optimally in k + 3 steps and

(�x.xEx) (�y.y[n]I) →� (�y.y[n]I) E (�y.y[n]I)
→� E [n] I (�y.y[n]I)
→∗

� (�xyz.z) I (�y.y[n]I)
→2

� �z.z

optimally in k + 4 steps

9



Optimal strategy: second case
If E [n]→∗

� a in k steps then

(�y.y[n](II)) E (�y.y[n](II)) →� E [n] (II) (�y.y[n](II))
→∗

� a (II) (�y.y[n](II))
→2

� a I (�y.y[n]I)

optimally in k + 3 steps and

(�x.xEx) (�y.y[n]I) →� (�y.y[n]I) E (�y.y[n]I)
→� E [n] I (�y.y[n]I)
→∗

� a I (�y.y[n]I)

optimally in k + 2 steps

Optimal strategy: conclusion

tn ≡ (�x.xEx) (�y.y[n](II))

If F is an optimal strategy, then

• if E [n]→∗
� �xyz.z then F (tn) = (�y.y[n](II)) E (�y.y[n](II)), and

• if E [n]→∗
� a then F (tn) = (�x.xEx) (�y.y[n]I)

An optimal strategy thus separates

{n ∣ E [n]→∗
� �xyz.z} and {n ∣ E [n]→∗

� a}

However, these two sets are not recursively separable, since by Scott’s theorem

{t ∣ t →∗
� �xyz.z} and {t ∣ t →∗

� a}

are not recursively separable.

4 The �-calculus is a model of computable functions

Bonus section, encoding general recursive function into �-calculus.

Definability
A mathematical function ' ∶ ℕp → ℕ is �-de�nable if there is a �-term f ∈ Λ such that

∀n1,… , np ∈ ℕ, f [n1] … [np] =� ['(n1,… , np)]

By Church-Rosser property, we could also have given the condition

∀n1,… , np ∈ ℕ, f [n1] … [np]→∗
� ['(n1,… , np)]

Property: the �-de�nable functions are exactly the recursive functions

Initial recursiuve functions
Zero Z (n) = 0

• Z = �x.[0]

Successor S(n) = n + 1

• S = �x.⟨F, x⟩

Projection U p
i (n0,… , np) = ni with 0 6 i 6 p

• Up
i = �x0… xp .xi

10



Composition of recursive functions
If F , G1, ..., Gm are recursive then the function H de�ned by

H (n⃗) = F (G1(n⃗),… , Gm(n⃗))

is recursive
Assume F , G1, ..., Gm are de�ned by f , g1, ..., gm then H can be de�ned by

ℎ ≡ �x⃗.F (G1 x⃗) … (Gm x⃗)

Primitive recursion
If F and G are recursive then the function H de�ned by

H (0, n⃗) = F (n⃗)
H (k + 1, n⃗) = G(H (k, n⃗), k, n⃗)

is recursive
Assume F and G are de�ned by f and g, we are looking for an ℎ such that

ℎ ≡ �xy⃗.if isZ x then f y⃗ else g (ℎ (Px) y⃗) (Px) y⃗

Fixpoint theorem: such a term ℎ exists

Minimisation
If F is recursive and is such that

∀n⃗ ∃m F (n⃗, m) = 0

then the function M de�ned by

M(n⃗) = the smallest m ∈ ℕ such that F (n⃗, m) = 0

is recursive
Assume F is de�ned by f , then de�ne

m ≡ �x⃗.(Θ (�ℎy.if isZ (f x⃗y) then y else ℎ(Sy)) [0])

Summary
We encoded in the �-calculus:

• the initial functions Z , S and U p
i

• function composition

• primitive recursion

• minimisation

Therefore, any recursive function is �-de�nable
The �-calculus is Turing-complete

5 Decidability, traditional presentation

The historical path, encoding �-terms as numbers.

11



Encoding �-terms using numbers
Assume a (computable and) injective function ' ∶ ℕ2 → ℕ, for instance '(x, y) ≡ 2x (2y + 1) − 1
Assign numbers to all variables: {x0, x1, x2,…}
We deduce a function ♯ ∶ Λ→ ℕ assigning a unique number to each �-term

♯xi = '(0, i)
♯(t u) = '(1, '(♯t, ♯u))

♯(�xi .t) = '(2, '(i, ♯t))

Encoding of a �-term t : the �-term t′ representing the number n representing the encoded �-term t

[t] ≡ [♯t]

Remark: this is a new encoding, thus all encoding-dependent theorems have to be proved again.

Enumeration theorem (admitted)

There is a �-term E such that for any closed �-term t , E [t]→∗
� t

This is the equivalent of the self-interpreter in the previous presentation. The proof however is far more
technical.

Proof of the second fixpoint theorem
The functions 'A and 'N de�ned by

'A(♯t, ♯u) = ♯(t u)
'N (♯t) = ♯[t]

are recursive. They are thus de�ned by �-terms A and N such that

A [t] [u] =� [t u]
N [t] =� [[t]]

De�ne
w ≡ �x.f (A x (N x))
z ≡ w [w]

Then z is a �xpoint for f .

z ≡ w [w] =� f (A [w] (N [w]))
=� f (A [w] [[w]])
=� f [w [w]] ≡ f [z]

Scott’s undecidability theorem (stated using general vocabulary of recursive functions)
Theorem

1. any two non-empty sets A, B ⊆ Λ closed by �-equality are not recursively separable

2. any non-trivial set A ⊆ Λ closed by �-equality is not recursive

De�nitions

• E is closed by �-equality if ∀x, y ∈ Λ x ∈ E ∧ x =� y ⟹ y ∈ E

• E is non-trivial if there are x ∈ E and y ∉ E

• A and B are recursively separable if there is a recursive set C such that A ⊆ C and B ∩ C = ∅

• C is recursive if its characteristic function is recursive

12



Proof of Scott’s theorem
Any two non-empty sets A, B ⊆ Λ closed by �-equality are not recursively separable
Assume there is a recursive set C such that A ⊆ C and B ∩C = ∅ Its characteristic function is realized

by a �-term f such that
t ∈ C ⟹ f [t] =� [1]
t ∉ C ⟹ f [t] =� [0]

Since A and B are not empty, we can �nd two terms a ∈ A and b ∈ B. De�ne

g ≡ �x.if isZ (f x) then b else a

Then
t ∈ C ⟹ g [t] =� b
t ∉ C ⟹ g [t] =� a

From the second �xpoint theorem, there is z such that g [z] = z

z ∈ C ⟹ z =� g [z] =� b ∈ B ⟹ z ∉ C
z ∉ C ⟹ z =� g [z] =� a ∈ A ⟹ z ∈ C

Contradiction!

Undecidability results...
are proved exactly as in the previous section, now that Scott’s theorem is established for this other

representation of �-terms.

Homework

1. Prove that there exists no �-term ℎ such that ℎ [t] = T for any t ∈ Λ with a normal form and
ℎ [t] = F for any t ∈ Λ with no normal form.

2. Using the encoding of algebraic datatypes, and one of the already de�ned encodings of numbers,
propose an encoding of lists, and of the nth function.

3. In your encoding, prove that nth k � = nth (k + 1) (t ∶ � ).

13


	Basic data and operations
	Fixpoints
	Decidability
	The -calculus is a model of computable functions
	Decidability, traditional presentation

