Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay Fall 2023 https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 3: *λ***-computability**

1 Basic data and operations

Functions

Identity function

 $I = \lambda x.x$

Function composition

$$g \circ f \equiv \lambda x.g(f(x))$$

Example

•	≡	$\lambda x.I(Ix)$
	=	$\lambda x.(\lambda y.y) ((\lambda z.z) x)$
	\rightarrow_{β}	$\lambda x.(\lambda z.z) x$
	\rightarrow_{β}	$\lambda x.x$

Booleans and conditionals

Boolean values

Doolean values	$T = \lambda x y. x$ $F = \lambda x y. y$
Conditional expression	if c then a else $b = c a b$

Example

if T then a else b	≡	Таb
	≡	$(\lambda x y.x) a b$
	\rightarrow_{β}	$(\lambda y.a) b$
	\rightarrow_{β}	а

Exercise: boolean operators

The following λ -term encodes a boolean operator. Which one?

 $\lambda ab.abF$

Write terms for the other common operators.

Pairs and projections

Pair

 $\langle a, b \rangle = \lambda s.s \ a \ b$

Projections

$$\begin{aligned} \pi_1 &= \lambda p.p \ (\lambda a b.a) & (\equiv \lambda p.p \ \mathsf{T}) \\ \pi_2 &\equiv \lambda p.p \ (\lambda a b.b) & (\equiv \lambda p.p \ \mathsf{F}) \end{aligned}$$

Example

$$\pi_2 \langle A, B \rangle = (\lambda p.p (\lambda ab.b)) \langle A, B \rangle$$

$$\rightarrow_{\beta} \langle A, B \rangle \lambda ab.b$$

$$= (\lambda s.s A B) \lambda ab.b)$$

$$\rightarrow_{\beta} (\lambda ab.b) A B$$

$$\rightarrow_{\beta} (\lambda b.b) B$$

$$\rightarrow_{\beta} B$$

Algebraic data types and pattern matching

The principle used for representing booleans can be generalized for representing any finite set, by using more parameters (for instance: { $\lambda abc.a$, $\lambda abc.b$, $\lambda abc.c$ } for a set of three elements). The principle used for representing pairs can be generalized to arbitrary tuples, by using more arguments (for instance: $\lambda x.xabc$ for a triple (a, b, c)).

Combinations of these can be used to represent any algebraic data type: we have a finite set of constructors, each of which contains a (possibly empty) tuple of parameters.

For instance, here is a definition of binary trees in caml (with integers at the leaves)

```
type tree =
   | L of int
   | N of tree * tree
```

We can encode such a tree following these shapes:

 $\begin{array}{rcl} \mathsf{L}(\mathsf{k}) & \mapsto & \lambda ab.a \, [k] & & (\mathsf{k} \text{ assumed non-negative}) \\ \mathsf{N}(t_1, \, t_2) & \mapsto & \lambda ab.b \, t_1 \, t_2 \end{array}$

Then pattern matching, as was the conditional, is just an application of the encoded term to the terms representing the various branches.

match t with $| L(k) \rightarrow f$ $| N(x, y) \rightarrow g$

will be encoded as

 $t (\lambda k.f) (\lambda x y.g)$

(where the term f may contain occurrences of the variable k, and the term g may contain occurrences of the variables x and y)

Integers

For each $n \in \mathbb{N}$ we define a λ -term [n]

$$\begin{bmatrix} 0 \end{bmatrix} \equiv \mathsf{I} \\ \begin{bmatrix} n+1 \end{bmatrix} \equiv \langle \mathsf{F}, [n] \rangle$$

Some basic operations

S	≡	$\lambda x. \langle F, x \rangle$	successor
Р	≡	$\lambda x.xF$	predecessor
isZ	≡	$\lambda x.xT$	zero?

Exercise: integers

Summary of the definitions

$$\begin{bmatrix} 0 \end{bmatrix} = I & S = \lambda x \cdot \langle F, x \rangle & \langle a, b \rangle = \lambda c. cab \\ \begin{bmatrix} n+1 \end{bmatrix} = \langle F, [n] \rangle & P = \lambda x. xF & T = \lambda ab.a \\ isZ = \lambda x. xT & F = \lambda ab.b \end{bmatrix}$$

Check the following equalities

$$\begin{array}{rrrr} S[n] & =_{\beta} & [n+1] \\ P[n+1] & =_{\beta} & [n] \\ P[0] & =_{\beta} & F \\ isZ[0] & =_{\beta} & T \\ isZ[n+1] & =_{\beta} & F \end{array}$$

Define a term add such that

add [n] [m] = [n+m]

Addition

We would like to write a recursive function

add n m = if isZ n then m else add (P n) (S m)

Problem: finding a λ -term add this way consists in solving an equation

2 Fixpoints

Fixpoints for numeric functions

A fixpoint of a function f is an x such that

f(x) = x

Finding such a fixpoint f means solving the equation x = f(x)Numeric functions may have various numbers of fixpoints

x	\mapsto	x	∞
x	\mapsto	x + 1	none
		x^2	two (0 and 1)
f : [0; 1]	\rightarrow	[0;1]	at least one if continuous

Fixpoints for λ **-calculus**

In the λ -calculus, *t* is a fixpoint of *f* if

 $f t =_{\beta} t$

Fixpoint theorem

Any λ -term *f* has a fixpoint

The fixpoint theorem guarantees that, in the λ -calculus, the equation $t =_{\beta} f t$ has always a solution

Church's fixpoint combinator

A term that builds fixpoints

$$Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$$

First remark that

$$Y f = (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))) f \rightarrow_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

The term $(\lambda x.f(xx))(\lambda x.f(xx))$, written Fix_f below, is a fixpoint of f. Indeed,

$$Fix_f = (\lambda x.f(xx))(\lambda x.f(xx)) \rightarrow_{\beta} f ((\lambda x.f(xx))(\lambda x.f(xx))) = f Fix_f$$

For any λ -term *f*, the term *Y f* builds a fixpoint of *f*.

Turing's fixpoint combinator

Another term that builds fixpoints, even more directly.

$$\Theta = A A$$
$$A = \lambda x y. y(x x y)$$

Checking that $f(\Theta f) =_{\beta} \Theta f$

$$\Theta f = (\lambda x y. y(x x y)) A f$$

$$\rightarrow_{\beta} (\lambda y. y(A A y)) f$$

$$= (\lambda y. y(\Theta y)) f$$

$$\rightarrow_{\beta} f(\Theta f)$$

For any λ -term f, the term Θf is a fixpoint of f

Mutual recursion

Double fixpoint theorem

 $\forall f, g \exists a, b \qquad a =_{\beta} f \ a \ b \quad \land \quad b =_{\beta} g \ a \ b$

Proof: define

$$d = \Theta (\lambda x. \langle f(\pi_1 x)(\pi_2 x), g(\pi_1 x)(\pi_2 x) \rangle)$$

$$a = \pi_1 d$$

$$b = \pi_2 d$$

Then

$$d \longrightarrow^{*} \langle f(\pi_{1}d)(\pi_{2}d), g(\pi_{1}d)(\pi_{2}d) \rangle$$

$$a = \pi_{1}d \longrightarrow^{*} f(\pi_{1}d)(\pi_{2}d) \equiv f \ a \ b$$

$$b = \pi_{2}d \longrightarrow^{*} g(\pi_{1}d)(\pi_{2}d) \equiv g \ a \ b$$

This can be extended to a n-ary fixpoint, for any n.

Back on the addition

add n m = if isZ n then m else add (P n) (S m) add = λnm .if isZ n then m else add (P n) (S m) add = ($\lambda f nm$.if isZ n then m else f (P n) (S m)) add

We define add as a fixpoint with

add =
$$\Theta(\lambda f n m. if is Z n then m else f (P n) (S m))$$

Exercise: Fibonacci sequence

Define a λ -term representing the Fibonacci function, defined by

$$f(0) = 0f(1) = 1f(n+2) = f(n+1) + f(n)$$

Exercise: paradoxical fixpoint?

We said that:

- $f : x \mapsto x + 1$ is function with zero fixpoint
- $F = \lambda x.S x$ is a λ -term, and therefore it has a fixpoint

How can these two facts both be true?

Exercise: Church integers (iterators)

Alternative representation for [*n*]

 $[n] = \lambda f x. f^n x$

Idea: [n] takes as argument of function f and returns a function that iterates n times fShow that $\lambda nf x.f(nf x)$ represents the successor function Find terms representing addition, multiplication, and predecessor

Exercise: Curry's Y-combinator

Another fixpoint combinator

$$Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$$

Check that for any term t we have

$$Y t =_{\beta} t (Y t)$$

Do we also have $Y t \rightarrow^*_{\beta} t (Y t)$?

3 Decidability

New version presented live, with λ -terms encoded by their AST.

de Bruijn notation: use numbers instead of variable names

Replace each variable occurrence with the number of λ between the occurrence and its binder

 λ . λ .0 1 ((λ .20) 0)

What we gain: the need for variable renamings disappears. Also, the syntax of terms will be easier to represent as a λ -encoded data structure

Translations between named and nameless variables

For any named closed term t, write [t] its nameless version. Generalization to term with free variables: let ℓ be a list of variable names that contains all the free variables of t, define $[t]_{\ell}$ the translation where each free variable x of t is associated to the index at which x appears in t.

$$\begin{bmatrix} x \end{bmatrix}_{\ell} = \text{index}_{0} f(x, \ell)$$
$$\begin{bmatrix} t & u \end{bmatrix}_{\ell} = \begin{bmatrix} t \end{bmatrix}_{\ell} \begin{bmatrix} u \end{bmatrix}_{\ell}$$
$$\begin{bmatrix} \lambda x.t \end{bmatrix}_{\ell} = \lambda . \begin{bmatrix} t \end{bmatrix}_{x:\ell}$$

(assume index_of is a function that returns the index at which the name x appears in the list ℓ).

Reverse: for any nameless closed term t, write (t) its named version. Generalization to term with free variables: let ℓ be a list of variable names that is long enough to account for every indices in t, define $(t)_{\ell}$ the translation where each free index of t is associated to the element at corresponding index of ℓ .

(assume nth is a function that returns the element at index k in the list ℓ).

Encoding the abstract syntax of nameless λ -terms.

Nameless terms can be represented with the following three constructors.

type term =
 | Var of int
 | App of term * term
 | Abs of term

Representation of such a data structure using λ -terms:

$$\begin{bmatrix} k \end{bmatrix} = \lambda a b c. a \begin{bmatrix} k \end{bmatrix}$$
$$\begin{bmatrix} t & u \end{bmatrix} = \lambda a b c. b \begin{bmatrix} t \end{bmatrix} \begin{bmatrix} u \end{bmatrix}$$
$$\begin{bmatrix} \lambda.t \end{bmatrix} = \lambda a b c. c \begin{bmatrix} t \end{bmatrix}$$

(note: [k] on the left of the first equation is the encoding of a λ -term made of the de Bruijn index k, defined by the equation, whereas [k] on the right of the same equation is the encoding of the naturel number k, as proposed at the beginning of the chapter)

Encoding the abstract syntax of named λ -terms.

One obtains an encoding of usual, named λ -terms by composing the translation to nameless representation with the previous translation. Here is a set of combined equations:

$$[x]_{\ell} = \lambda abc.a [index_of(x, \ell)]$$

$$[t u]_{\ell} = \lambda abc.b [t]_{\ell} [u]_{\ell}$$

$$[\lambda x.t]_{\ell} = \lambda abc.c [t]_{x:\ell}$$

(again, [index_of(x, ℓ)] is the encoding of a natural number as defined at the beginning of the chapter)

Self-interpreter

Using the previous term representation, one can define an interpreter of the λ -calculus, in the λ -calculus. Such a function can be called a *self-interpreter*, and also corresponds to the concept of *universal machine* that you will hear of again in the computability course. This interpreter is a term *e* such that for any term *t* and any list ℓ we have

$$e[t]_{\ell} \ell =_{\beta} t$$

(this assumes that the list ℓ can also encoded as a λ -term, which is left as an exercise)

For such an interpreter, we want the following equations:

$$e [x]_{\ell} \ell = e (\lambda abc.a [k]) \ell = nth(k, \ell)$$

$$e [t u]_{\ell} \ell = e (\lambda abc.bb [t]_{\ell} [u]_{\ell}) \ell = (e [t]_{\ell} \ell) (e [t]_{\ell} \ell)$$

$$e [\lambda x.t]_{\ell} \ell = e (\lambda abc.c [t]_{x:\ell}) \ell = \lambda x.(e [t]_{:\ell} x:\ell)$$

Thus we propose the following term:

$$e = Y (\lambda e.\lambda t.\lambda \ell. t (\lambda k.nth(k, \ell)) (\lambda t u.(e t \ell) (e u \ell)) (\lambda t.\lambda x.e t (x : \ell)))$$

Correctness of the self-interpreter

Assuming that lists of names ℓ can be encoded as λ -terms as well as the two functions index_of and nth, we prove that for any term t and any list ℓ containing (at least) the free variables of t:

$$e[t]_{\ell} \ell =_{\beta} t$$

Write e = Y e'. We have in one step

$$e = Y e' \rightarrow (\lambda x.e'(xx))(\lambda x.e'(xx)) = e''$$

where the obtained term e'' is the fixpoint of e' produced by *Y*. Since all encodings share a common structure, first remark that

$$e [t]_{\ell} \ell = Y e' [t]_{\ell} \ell$$

$$\rightarrow (\lambda x. e'(xx))(\lambda x. e'(xx)) [t]_{\ell} \ell$$

$$= e'' [t]_{\ell} \ell$$

$$\rightarrow e' e'' [t]_{\ell} \ell$$

$$\rightarrow^{3} [t]_{\ell} e_{1} e_{2} e_{3}$$

where

$$e_1 = \lambda k.nth(k, \ell)$$

$$e_2 = \lambda t u.(e'' t \ell) (e'' u \ell)$$

$$e_3 = \lambda t.\lambda x.e'' t (x : \ell)$$

Now prove the result by induction on *t*:

• Case of a variable x (assumed in ℓ):

$$e [x]_{\ell} \ell \longrightarrow [x]_{\ell} e_1 e_2 e_3$$

= $(\lambda a b c. a [index_of(x, \ell)]) e_1 e_2 e_3$
 $\rightarrow^3 e_1 [index_of(x, \ell)]$
= $(\lambda k.nth(k, \ell)) [index_of(x, \ell)]$
= $nth([index_of(x, \ell)], \ell)$

The specifications of nth and index_of indeed require that $nth([index_of(x, \ell)], \ell)$ is equal to x (when x is in ℓ).

• Case of an application *t u*:

$$e [t u]_{\ell} \ell \longrightarrow [t u]_{\ell} e_{1} e_{2} e_{3}$$

$$= (\lambda abc.b [t]_{\ell} [u]_{\ell}) e_{1} e_{2} e_{3}$$

$$\longrightarrow^{3} e_{2} [t]_{\ell} [u]_{\ell}$$

$$= (\lambda t u. (e'' t \ell) (e'' u \ell)) [t]_{\ell} [u]_{\ell}$$

$$\longrightarrow^{2} (e'' [t]_{\ell} \ell) (e'' [u]_{\ell} \ell)$$

$$=_{\beta} t u \qquad by induction hypotheses$$

• Case of an abstraction $\lambda x.t$:

$$e [\lambda x.t]_{\ell} \ell \rightarrow [\lambda x.t]_{\ell} e_{1} e_{2} e_{3}$$

$$= (\lambda abc.c [t]_{x:\ell}) e_{1} e_{2} e_{3}$$

$$\rightarrow^{3} e_{3} [t]_{x:\ell}$$

$$= (\lambda t.\lambda x.e'' t (x : \ell)) [t]_{x:\ell}$$

$$\rightarrow \lambda x.e'' [t]_{x:\ell} (x : \ell) \quad (\text{note: } x \notin \text{fv}([t]_{x:\ell}))$$

$$=_{\beta} \lambda x.t \qquad by \text{ induction hypothesis}$$

Second fixpoint theorem

$$\forall f \exists t \quad f[t] =_{\beta} t$$

Proof of the second fixpoint theorem

First remark that one could write two terms A and N such that

$$\begin{array}{l} \mathsf{A}\left[t\right]\left[u\right] &=_{\beta} & \left[t \ u\right] \\ \mathsf{N}\left[t\right] &=_{\beta} & \left[\left[t\right]\right] \end{array}$$

(A is simply $\lambda t u . \lambda a b c. b t u$, whereas N is defined as the fixpoint of a function defined by pattern matching on the representation [t] of t)

Then define

$$w = \lambda x.f (A x (N x))$$
$$z = w [w]$$

Then z is a fixpoint for f.

$$z \equiv w [w] =_{\beta} f (A [w] (N [w]))$$
$$=_{\beta} f (A [w] [[w]])$$
$$=_{\beta} f [w [w]] = f [z]$$

Scott's undecidability theorem

Theorem

- 1. any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not effectively separable
- 2. no non-trivial set $A \subseteq \Lambda$ closed by β -equality can be effectively characterized

Definitions

- *E* is closed by β -equality if $\forall x, y \in \Lambda \ x \in E \land x =_{\beta} y \implies y \in E$
- *E* is non-trivial if there are $x \in E$ and $y \notin E$
- *A* and *B* are effectively separable if there is an effectively characterized set *C* such that $t \in A \implies t \in C$ and $t \in B \implies t \notin C$
- *C* is effectively characterized if there is a λ -term *f* such that $f \ t =_{\beta} T$ for any $t \in C$ and $f \ t =_{\beta} F$ for any $t \notin C$

(note: in the definition of "effectively characterized" it is of critical importance that the application of the λ -term *f* to *any* λ -term *t* is normalizable)

Proof of Scott's theorem

Any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not effectively separable

Assume there is a separating set *C* such that $A \subseteq C$ and $B \cap C = \emptyset$, characterized by a λ -term *f* such that

$$\begin{array}{ccc} t \in C & \Longrightarrow & f\left[t\right] =_{\beta} \mathsf{T} \\ t \notin C & \Longrightarrow & f\left[t\right] =_{\beta} \mathsf{F} \end{array}$$

Since *A* and *B* are not empty, we can find two terms $a \in A$ and $b \in B$. Define

$$g = \lambda x.$$
if $f x$ then b else a

Then

$$\begin{array}{rcl} t \in C & \Longrightarrow & g\left[t\right] =_{\beta} b \\ t \notin C & \Longrightarrow & g\left[t\right] =_{\beta} a \end{array}$$

From the second fixpoint theorem, there is *z* such that g[z] = z

$$\begin{array}{cccc} z \in C & \Longrightarrow & z =_{\beta} g \ [z] =_{\beta} b \in B & \Longrightarrow & z \notin C \\ z \notin C & \Longrightarrow & z =_{\beta} g \ [z] =_{\beta} a \in A & \Longrightarrow & z \in C \end{array}$$

Contradiction!

Undecidability of β -equality

No algorithm can decide whether two arbitrary λ -terms are β -equal Assume *f* is a λ -term such that, for any *a* and *b*, *f* [*a*] [*b*] equals to [1] if $a =_{\beta} b$ and to [0] otherwise Define $A = \{x \mid x =_{\beta} a\}$

- by definition, *A* is closed by β -equality
- A is not empty, since it contains a
- $\Lambda \setminus A$ is not empty, because:
 - if *a* has a normal form, then $\Omega \notin A$
 - if *a* has no normal form, then $\lambda x.x \notin A$

By Scott's theorem, the set *A* is not recursive

On the other hand, f[a] computes the characteristic function of A Contradiction.

Exercise: halting problem for the λ -calculus

No algorithm can decide whether an arbitrary λ -term has a normal form

Undecidability of the optimal strategy

Strategy: function $F : \Lambda \to \Lambda$ such that

$$\forall t \in \Lambda \quad t \longrightarrow_{\beta} F(t)$$

Optimal strategy: strategy that always picks a shortest path to the normal form (if there is a normal form)

There is no computable optimal strategy

Undecidability of the optimal strategy: idea

Consider the set

$$t_n = (\lambda x.x Ex) (\lambda y.y[n](II))$$

of λ -terms, where E enumerates λ -terms with at most one free variable *a*

Assuming E is already in normal form, for each *n* we have to choose between:

- reducing $t_n \rightarrow_{\beta} (\lambda y. y[n](II)) \in (\lambda y. y[n](II))$
- reducing $t_n \rightarrow_{\beta} (\lambda x.x Ex) (\lambda y.y[n]I)$

However, the best choice differs depending on the normal form of E[n]

Optimal strategy: first case

If $E[n] \rightarrow^*_{\beta} \lambda xyz.z$ in *k* steps then

$$\begin{array}{ll} (\lambda y.y[n](\mathrm{II})) \in (\lambda y.y[n](\mathrm{II})) & \longrightarrow_{\beta} & \in [n] (\mathrm{II}) (\lambda y.y[n](\mathrm{II})) \\ & \longrightarrow_{\beta}^{*} & (\lambda xyz.z) (\mathrm{II}) (\lambda y.y[n](\mathrm{II})) \\ & \longrightarrow_{\beta}^{2} & \lambda z.z \end{array}$$

optimally in k + 3 steps and

$$\begin{array}{ll} (\lambda x.x \mathbb{E}x) \ (\lambda y.y[n] \mathbb{I}) & \longrightarrow_{\beta} & (\lambda y.y[n] \mathbb{I}) \mathbb{E} \ (\lambda y.y[n] \mathbb{I}) \\ & \longrightarrow_{\beta} & \mathbb{E} \ [n] \ \mathbb{I} \ (\lambda y.y[n] \mathbb{I}) \\ & \longrightarrow_{\beta}^{*} & (\lambda xyz.z) \ \mathbb{I} \ (\lambda y.y[n] \mathbb{I}) \\ & \longrightarrow_{\beta}^{*} & \lambda z.z \end{array}$$

optimally in k + 4 steps

Optimal strategy: second case

If $E[n] \rightarrow^*_{\beta} a$ in *k* steps then

$$\begin{array}{ll} (\lambda y.y[n](\mathsf{II})) \in (\lambda y.y[n](\mathsf{II})) & \longrightarrow_{\beta} & \in [n] (\mathsf{II}) (\lambda y.y[n](\mathsf{II})) \\ & \longrightarrow_{\beta}^{*} & a (\mathsf{II}) (\lambda y.y[n](\mathsf{II})) \\ & \longrightarrow_{\beta}^{*} & a \mathsf{I} (\lambda y.y[n]\mathsf{I}) \end{array}$$

optimally in k + 3 steps and

$$\begin{array}{ll} (\lambda x.x \mathsf{E} x) \ (\lambda y.y[n] \mathsf{I}) & \longrightarrow_{\beta} & (\lambda y.y[n] \mathsf{I}) \ \mathsf{E} \ (\lambda y.y[n] \mathsf{I}) \\ & \longrightarrow_{\beta} & \mathsf{E} \ [n] \ \mathsf{I} \ (\lambda y.y[n] \mathsf{I}) \\ & \longrightarrow_{\beta}^{*} & a \ \mathsf{I} \ (\lambda y.y[n] \mathsf{I}) \end{array}$$

optimally in k + 2 steps

Optimal strategy: conclusion

$$t_n = (\lambda x. x Ex) (\lambda y. y[n](II))$$

If F is an optimal strategy, then

• if $\mathbb{E}[n] \rightarrow^*_{\beta} \lambda x y z.z$ then $F(t_n) = (\lambda y.y[n](\mathsf{II})) \mathbb{E}(\lambda y.y[n](\mathsf{II}))$, and

• if $\mathsf{E}[n] \longrightarrow_{\beta}^{*} a$ then $F(t_n) = (\lambda x.x\mathsf{E}x) (\lambda y.y[n]\mathsf{I})$

An optimal strategy thus separates

$$\{n \mid \mathsf{E}[n] \to^*_{\beta} \lambda xyz.z\}$$
 and $\{n \mid \mathsf{E}[n] \to^*_{\beta} a\}$

However, these two sets are not recursively separable, since by Scott's theorem

 $\{t \mid t \longrightarrow^*_{\beta} \lambda xyz.z\}$ and $\{t \mid t \longrightarrow^*_{\beta} a\}$

are not recursively separable.

4 The λ -calculus is a model of computable functions

Bonus section, encoding general recursive function into λ -calculus.

Definability

A mathematical function $\varphi : \mathbb{N}^p \to \mathbb{N}$ is λ -definable if there is a λ -term $f \in \Lambda$ such that

 $\forall n_1, \dots, n_p \in \mathbb{N}, \quad f[n_1] \dots [n_p] =_{\beta} [\varphi(n_1, \dots, n_p)]$

By Church-Rosser property, we could also have given the condition

$$\forall n_1, \dots, n_p \in \mathbb{N}, \quad f[n_1] \dots [n_p] \to^*_\beta [\varphi(n_1, \dots, n_p)]$$

Property: the λ *-definable functions are exactly the recursive functions*

Initial recursivve functions

Zero Z(n) = 0

• $Z = \lambda x.[0]$

Successor S(n) = n + 1

• S =
$$\lambda x. \langle F, x \rangle$$

Projection $U_i^p(n_0, ..., n_p) = n_i$ with $0 \le i \le p$

• $U_i^p = \lambda x_0 \dots x_p . x_i$

Composition of recursive functions

If F, G_1 , ..., G_m are recursive then the function H defined by

$$H(\vec{n}) = F(G_1(\vec{n}), \dots, G_m(\vec{n}))$$

is recursive

Assume $F, G_1, ..., G_m$ are defined by $f, g_1, ..., g_m$ then H can be defined by

$$h = \lambda \vec{x}.F\left(G_1 \ \vec{x}\right) \dots \left(G_m \ \vec{x}\right)$$

Primitive recursion

If F and G are recursive then the function H defined by

$$H(0, \vec{n}) = F(\vec{n}) H(k + 1, \vec{n}) = G(H(k, \vec{n}), k, \vec{n})$$

is recursive

Assume F and G are defined by f and g, we are looking for an h such that

$$h = \lambda x \vec{y}$$
.if isZ x then $f \vec{y}$ else g $(h (Px) \vec{y}) (Px) \vec{y}$

Fixpoint theorem: such a term h exists

Minimisation

If F is recursive and is such that

 $\forall \vec{n} \exists m \ F(\vec{n}, m) = 0$

then the function M defined by

$$M(\vec{n})$$
 = the smallest $m \in \mathbb{N}$ such that $F(\vec{n}, m) = 0$

is recursive

Assume F is defined by f, then define

$$m = \lambda \vec{x} \cdot (\Theta(\lambda h y) \cdot \text{if is Z}(f \vec{x} y) \text{ then } y \text{ else } h(Sy))[0])$$

Summary

We encoded in the λ -calculus:

- the initial functions Z, S and U_i^p
- function composition
- primitive recursion
- minimisation

Therefore, any recursive function is λ -definable *The* λ *-calculus is Turing-complete*

5 Decidability, traditional presentation

The historical path, encoding λ -terms as numbers.

Encoding λ -terms using numbers

Assume a (computable and) injective function $\varphi : \mathbb{N}^2 \to \mathbb{N}$, for instance $\varphi(x, y) \equiv 2^x(2y + 1) - 1$ Assign numbers to all variables: $\{x_0, x_1, x_2, ...\}$

We deduce a function $# : \Lambda \rightarrow \mathbb{N}$ assigning a unique number to each λ -term

Encoding of a λ -term *t*: the λ -term *t'* representing the number *n* representing the encoded λ -term *t*

 $[t] \equiv [\#t]$

Remark: this is a new encoding, thus all encoding-dependent theorems have to be proved again.

Enumeration theorem (admitted)

```
There is a \lambda-term E such that for any closed \lambda-term t, E [t] \rightarrow^*_{\beta} t
```

This is the equivalent of the self-interpreter in the previous presentation. The proof however is far more technical.

Proof of the second fixpoint theorem

The functions φ_A and φ_N defined by

$$\varphi_A(\#t, \#u) = \#(t \ u)$$

 $\varphi_N(\#t) = \#[t]$

are recursive. They are thus defined by λ -terms A and N such that

$$\begin{array}{ll} \mathsf{A} \begin{bmatrix} t \end{bmatrix} \begin{bmatrix} u \end{bmatrix} & =_{\beta} & \begin{bmatrix} t & u \end{bmatrix} \\ \mathsf{N} \begin{bmatrix} t \end{bmatrix} & =_{\beta} & \begin{bmatrix} t \end{bmatrix} \end{bmatrix}$$

Define

$$w = \lambda x.f (A x (N x))$$

$$z = w [w]$$

Then z is a fixpoint for f.

$$z = w [w] =_{\beta} f (A [w] (N [w]))$$
$$=_{\beta} f (A [w] [[w]])$$
$$=_{\beta} f [w [w]] = f [z]$$

Scott's undecidability theorem (stated using general vocabulary of recursive functions) Theorem

- 1. any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not recursively separable
- 2. any non-trivial set $A \subseteq \Lambda$ closed by β -equality is not recursive

Definitions

- *E* is closed by β -equality if $\forall x, y \in \Lambda \ x \in E \land x =_{\beta} y \implies y \in E$
- *E* is non-trivial if there are $x \in E$ and $y \notin E$
- A and B are recursively separable if there is a recursive set C such that $A \subseteq C$ and $B \cap C = \emptyset$
- *C* is recursive if its characteristic function is recursive

Proof of Scott's theorem

Any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not recursively separable

Assume there is a recursive set *C* such that $A \subseteq C$ and $B \cap C = \emptyset$ Its characteristic function is realized by a λ -term *f* such that

$$\begin{array}{ll} t \in C & \Longrightarrow & f\left[t\right] =_{\beta} \left[1\right] \\ t \notin C & \Longrightarrow & f\left[t\right] =_{\beta} \left[0\right] \end{array}$$

Since *A* and *B* are not empty, we can find two terms $a \in A$ and $b \in B$. Define

$$g = \lambda x.if isZ (f x) then b else a$$

Then

$$\begin{array}{rcl} t \in C & \Longrightarrow & g\left[t\right] =_{\beta} b \\ t \notin C & \Longrightarrow & g\left[t\right] =_{\beta} a \end{array}$$

From the second fixpoint theorem, there is *z* such that g[z] = z

$$\begin{array}{cccc} z \in C & \Longrightarrow & z =_{\beta} g \left[z \right] =_{\beta} b \in B & \Longrightarrow & z \notin C \\ z \notin C & \Longrightarrow & z =_{\beta} g \left[z \right] =_{\beta} a \in A & \Longrightarrow & z \in C \end{array}$$

Contradiction!

Undecidability results...

are proved exactly as in the previous section, now that Scott's theorem is established for this other representation of λ -terms.

Homework

- 1. Prove that there exists no λ -term h such that h[t] = T for any $t \in \Lambda$ with a normal form and h[t] = F for any $t \in \Lambda$ with no normal form.
- 2. Using the encoding of algebraic datatypes, and one of the already defined encodings of numbers, propose an encoding of lists, and of the nth function.
- 3. In your encoding, prove that nth $k \ell = \operatorname{nth} (k + 1) (t : \ell)$.