
Lambda-calculus and programming language semantics
Thibaut Balabonski @ UPSay
Fall 2023
https://www.lri.fr/∼blsk/LambdaCalculus/

Chapter 4: simply-typed �-calculus
1 Wrong programs

Wrong program in Python

p = (4, 2)
return p[1][0]

Runtime error

Traceback (most recent call last):
File "<stdin >", line 1, in <module >

TypeError: 'int ' object has no attribute
'__getitem__ '

Wrong program in Caml

let p = (4, 2) in
fst(snd p)

Compile-time error

Error: This expression has type int but an
expression was expected of type 'a * 'b

Wrong �-term

(�x.�1(�2(x))) ((�y.⟨y, (�z.z)2⟩)4)
→v (�x.�1(�2(x))) ⟨4, (�z.z)2⟩
→v (�x.�1(�2(x))) ⟨4, 2⟩
→v �1(�2(⟨4, 2⟩)))
→v �1(2)

blocked term: not a value, yet not reducible

Motto Well-typed programs do not go wrong
Connects a static analysis

• expressions have consistent types

with a semantic property

• the programs runs smoothly

1

https://www.lri.fr/~blsk/LambdaCalculus/


2 Simple types

Typed syntax
Types

�, � ∶∶= o base types
| � → � function types

Terms
t ∶∶= x variable

| �x� .t typed abstraction
| t1 t2 application

Notation �n → (�n−1… (�1 → �0) …) is written �n → �n−1…�1 → �0

Simple types, à la Church
Typing judgment

Γ ⊢ t ∶ �

the term t is well typed with type � in the environment Γ with Γ: a set of typed variables {x�11 , … , x�nn }

x� ∈ Γ
Γ ⊢ x ∶ �

Γ, x� ⊢ e ∶ �
Γ ⊢ �x� .e ∶ � → �

Γ ⊢ e1 ∶ � → � Γ ⊢ e2 ∶ �
Γ ⊢ e1 e2 ∶ �

Simple types, without annotations
Typing judgment

Γ ⊢ t ∶ �

the term t is well typed with type � in the environment Γ with Γ: a function from variables to types
{x1 ∶ �1, … , xn ∶ �n}

Γ(x) = �
Γ ⊢ x ∶ �

Γ, x ∶ � ⊢ e ∶ �
Γ ⊢ �x.e ∶ � → �

Γ ⊢ e1 ∶ � → � Γ ⊢ e2 ∶ �
Γ ⊢ e1 e2 ∶ �

Exercise: examples and counter-examples
Give typing judgments for the following terms, or justify that this cannot be done

• �x.x

• �xy.x

• �xyz.x(yz)

• �x.xx

Extended types: integers
New type

�, � ∶∶= ...
| int

New typing rules

Γ ⊢ n ∶ int

Γ ⊢ t1 ∶ int Γ ⊢ t2 ∶ int

Γ ⊢ t1 ⊕ t2 ∶ int

2



Extended types: booleans
New type

�, � ∶∶= ...
| bool

New typing rules

Γ ⊢ T ∶ bool Γ ⊢ F ∶ bool

Γ ⊢ t ∶ int

Γ ⊢ isZero(t) ∶ bool

Γ ⊢ t1 ∶ bool Γ ⊢ t2 ∶ � Γ ⊢ t3 ∶ �
Γ ⊢ if t1 then t2 else t3 ∶ �

Extended types: products
New type

�, � ∶∶= ...
| �1 × �2

New typing rules

Γ ⊢ t1 ∶ �1 Γ ⊢ t2 ∶ �2
Γ ⊢ ⟨t1, t2⟩ ∶ �1 × �2

Γ ⊢ t ∶ �1 × �2
Γ ⊢ �1(t) ∶ �1

Γ ⊢ t ∶ �1 × �2
Γ ⊢ �2(t) ∶ �2

Extended types: recursion
New typing rule

Γ ⊢ t ∶ (� → �) → (� → �)
Γ ⊢ Fix(t) ∶ � → �

3 Type preservation

Type preservation: �-reduction
If Γ ⊢ t ∶ � and t →� t′ then

Γ ⊢ t′ ∶ �

Proof by induction on t →� t′.

• Case t1t2 → t′1t2 with t1 → t′1
By inversion of the hypothesis Γ ⊢ t1t2 ∶ � there is � such that Γ ⊢ t1 ∶ � → � and Γ ⊢ t2 ∶ �

By induction hypothesis Γ ⊢ t′1 ∶ � → � and one can conclude with the typing rule for applica-
tions.

Γ ⊢ t′1 ∶ � → � Γ ⊢ t2 ∶ �
Γ ⊢ t′1t2 ∶ �

3



• Case t1t2 → t1t′2 with t2 → t′2 similar

• Case �x.t0 → �x.t′0 with t0 → t′0 similar

• Case (�x.t1)t2 → t1{x ← t2}

By inversion of the hypothesis Γ ⊢ (�x.t1)t2 ∶ � there is � such that Γ ⊢ �x.t1 ∶ � → � and
Γ ⊢ t2 ∶ �

and by inversion of Γ ⊢ �x.t1 ∶ � → � we get Γ, x ∶ � ⊢ t1 ∶ �

Last step required: combine Γ, x ∶ � ⊢ t1 ∶ � and Γ ⊢ t2 ∶ � to conclude something about the type
of t1{x ← t2}

Lemma: substitution preserves types

If Γ, x ∶ � ⊢ t ∶ � and Γ ⊢ u ∶ � then Γ ⊢ t{x ← u} ∶ �

Substitution and types
If Γ, x ∶ � ⊢ t ∶ � and Γ ⊢ u ∶ � then

Γ ⊢ t{x ← u} ∶ �

Proof by induction on the derivation of Γ, x ∶ � ⊢ t ∶ �

• Case where t is a variable

– Case Γ, x ∶ � ⊢ x ∶ � with � = �
Then x{x ← u} = u and Γ ⊢ u ∶ � = �

– Case Γ, x ∶ � ⊢ y ∶ � with x ≠ y and Γ(y) = �
Then y{x ← u} = y and Γ ⊢ y ∶ �

• Case Γ, x ∶ � ⊢ t1 t2 ∶ � with Γ, x ∶ � ⊢ t1 ∶ � → � and Γ, x ∶ � ⊢ t2 ∶ �

and induction hypotheses Γ ⊢ t1{x ← u} ∶ � → � and Γ ⊢ t2{x ← u} ∶ �

We deduce Γ ⊢ (t1{x ← u}) (t2{x ← u}) ∶ � , which allows us to conclude since (t1{x ←
u}) (t2{x ← u}) = (t1 t2){x ← u}

• Case Γ, x ∶ � ⊢ �y� ′ .t ∶ � ′ → � with Γ, x ∶ �, y ∶ � ′ ⊢ t ∶ �

and induction hypothesis Γ, y ∶ � ′ ⊢ t{x ← u} ∶ �

THen Γ ⊢ �y� ′ .(t{x ← u}) ∶ �

By �-renaming we assume y ≠ x and y ∉ fv(u), therefore (�y� ′ .t){x ← u} = �y� ′ .(t{x ← u}),
and we conclude with the former judgment

Reduction preserves types
Consequences

• If a term has a type, it will keep it along �-reduction

• If a term has a type and a normal form, the normal form has the same type

4 Type safety

Safety
Evaluation of a term should never see an inconsistent operation

• reduction never blocked before reaching a value

Simple statement: if t is not a value, then there is t′ such that t → t′

4



Type safety
Progress lemma

If ⊢ t ∶ � and t is not a value then there is t′ such that t → t′

Using also the type preservation lemma we deduce ⊢ t′ ∶ � , and we can go on
Safety theorem
If ⊢ t ∶ � , then

• either there is t → t1 → ... → tn with tn a value

• or there is an in�nite reduction sequence t → t1 → t2 → ...

Progress lemma for �-calculus + pairs (call by value)
The property

If ⊢ t ∶ � then either t is a value or there is t′ with t →v t′

is proved by induction on the derivation of ⊢ t ∶ �

• Case Γ ⊢ x ∶ � with Γ(x) = �

Impossible since we consider only the empty environment

• Case ⊢ �x.t0 ∶ � → � with x ∶ � ⊢ t0 ∶ �

Then t = �x.t0 is a value

• Case ⊢ ⟨t1, t2⟩ ∶ �1 × �2 with ⊢ t1 ∶ �1 and ⊢ t1 ∶ �2
By induction hypothesis on ⊢ t1 ∶ �1 we have:

– either there is t′1 with t1 → t′1 and then ⟨t1, t2⟩ →v ⟨t′1, t2⟩
– or t1 is a value v1

Then by induction hypothesis on ⊢ t2 ∶ �2 we have:

∗ either there is t′2 with t2 → t′2 and then ⟨v1, t2⟩ →v ⟨v1, t′2⟩
∗ or t2 is a value v2 and then ⟨v1, v2⟩ is a value

• Case ⊢ t1t2 ∶ � with ⊢ t1 ∶ � → � and ⊢ t2 ∶ �

As in the previous case:

– either there is t′1 with t1 → t′1, and then t1t2 →v t′1t2
– or t1 is a value v1, and in this case

∗ either there is t′2 with t2 → t′2, and then v1t2 →v v1t′2
∗ or t2 is a value v2 Then we want to prove that v1 v2 reduces
Classi�cation lemma: if a is a value and Γ ⊢ t ∶ � → � then a has the shape �x.a′

By classi�cation lemma, there are x , t′1 such that v1 = �x.t′1 and therefore (�x.t′1)v2 →v t′1{x ←
v2}

• Case ⊢ �1(t0) ∶ �1 with ⊢ t0 ∶ �1 × �2 By induction hypothesis we have:

– either there is t′0 with t0 → t′0, and then �1(t0) →v �1(t′0)
– or t0 is a value v0, and we want to prove that �1(v0) reduces

Classi�cation lemma: if a is a value and Γ ⊢ a ∶ �1 × �2 then a has the shape ⟨a1, a2⟩
By classi�cation lemma there are v1, v2 such that v0 = ⟨v1, v2⟩ and therefore �1(⟨v1, v2⟩) →v
v1

• Case ⊢ �2(t0) ∶ �2 with ⊢ t0 ∶ �1 × �2 is similar

5



5 Curry-Howard correspondence

Programs = proofs trailer

types �-calculus

Γ(x) = �
Γ ⊢ x ∶ �

Γ, x ∶ � ⊢ e ∶ �
Γ ⊢ �x.e ∶ � → �

Γ ⊢ e1 ∶ � → � Γ ⊢ e2 ∶ �
Γ ⊢ e1 e2 ∶ �

� : type
⊢ : typability

Natural deduction

� ∈ Γ
Γ ⊢ �

Γ, � ⊢ �
Γ ⊢ � ⇒ �

Γ ⊢ � ⇒ � Γ ⊢ �
Γ ⊢ �

� : formula
⊢ : provability

Many proof assistants are built upon this correspondence

6 Normalization

Normalization
Does reduction actually make something smaller?
Theorm

If Γ ⊢ t ∶ � , then t is strongly normalizing.

Normalization theorem: a syntactic proof?
If Γ ⊢ t ∶ � , then t is strongly normalizing.
Proof attempt using structural induction on t

• Case of a variable: x is strongly normalizable

• Case of an abstraction: if t0 is strongly normalizing, then so is �x.t0

• Case of an application: if t1 and t2 are both strongly normalizing, then...

t1t2 →∗
� (�x.t

′
1)t2 →

∗
� (�x.t

′
1)t

′
2 →� t′1{x ← t′2} →�???

Problem: t′1{x ← t′2} is not a subterm of t , so we have no induction hypothesis available

Lemma

If t and u are well-typed and strongly normalizing, then t{x ← u} is strongly normalizing

Exercise: preservation of normalization by reduction
If t is strongly normalizing and t →∗ t′ then t′ is strongly normalizing
If t is normalizable and t →∗ t′ then t′ is normalizable
If s and t are strongly normalizing and not st then there are x , s′ such that s →∗ �x.s′ and s′{x ← t}

is not strongly normalizing

6



Application lemma
Lemma

If s, t and u⃗ are strongly normalizing but stu⃗ is not, then there are x , s′ such that s →∗ �x.s′ and
s′{x ← t}u⃗ is not strongly normalizing

Rephrasing using contraposition If

• s, t and u⃗ are strongly normalizing

• s →∗ �x.s′

• s′{x ← t}u⃗ is strongly normalizing

then stu⃗ is strongly normalizing

Well-founded order
Order relation (E, ≤): binary relation ≤ on the set E that is:

• re�exive ∀x ∈ E, x ≤ x

• antisymmetric ∀x, y ∈ E, x ≤ y ∧ y ≤ x ⇒ x = y

• transitive ∀x, y, z ∈ E, x ≤ y ∧ y ≤ z ⇒ x ≤ z

Strict order
x < y ⟺ x ≤ y ∧ x ≠ y

Well-founded order: no in�nite strictly decreasing chain

x0 > x1 > x2 > ...

Alternative characterization: every non-empty subset of E has a minimal element

Well-founded induction
Context: well-founded order (E, ≤)
For any predicate P on E

(∀x ∈ E, (∀y ∈ E, y < x ⇒ P(y)) ⇒ P(x)) ⇒ ∀x ∈ E, P(x)

Goal: proving a property of the shape ∀x ∈ E, P(x)
Let x ∈ E

• assume P(y) true for all y < x (induction hypotheses)

• show that P(x) holds

Question: where is the base case of this induction?

Lexicographic order
Lexicographic product of two orders (A, ≤A) and (B, ≤B): order on A × B de�ned by the condition

(a, b) ≤ (a′, b′) ⟺ a <A a′ ∨ (a = a′ ∧ b ≤B b′)

Property

the lexicographic product of two well-founded orders is a well-founded order

Consequence: induction on a lexicographic order is valid

7



Exercise: Ackermann function
The Ackermann function is described by the following equations

ack(0, n) = n + 1
ack(m + 1, 0) = ack(m, 1)

ack(m + 1, n + 1) = ack(m, ack(m + 1, n))

Show that ack(m, n) is indeed de�ned for any m, n ∈ ℕ

Lemma: preservation of normalization by substitution
Lemma

If t and u are well-typed and strong normalizing then t{x ← u} is strongly normalizing

By induction on the lexicographic product

(sz(ty(u)), ht(t), sz(t))

where

• ty(u) is the type of u

• sz(a) is the size of a (numbers of nodes in the syntactic tree)

• ht(t) is the length of the longest reduction sequence starting from t

Proof
By case on the shape of t

• Case of a variable

– Case t = x then x{x ← u} = u, strongly normalizing by hypothesis

– Case t = y with y ≠ x then y{x ← u} = y , strongly normalizing

• Case of an abstraction: t = �x.t0
Then ht(t0) = ht(t) and sz(t0) < sz(t) and then (sz(ty(u)), ht(t0), sz(t0)) < (sz(ty(u)), ht(t), sz(t))
By induction hypothesis, t0{x ← u} is strongly normalizing

Thus t{x ← u} = �x.(t0{x ← u}) is strongly normalizing.

• Case of an application: t = t0t1t2… tn with t0 not an application

Case on t0

– Case t0 = y with y ≠ x
Each reductions of t is in one of the ti with i ≥ 1 thus ht(ti) ≤ ht(t) for all i ≥ 1, moreover
sz(ti) < sz(t) for all i ≥ 1.
Thus by induction hypothesis ti{x ← u} is strongly normalizing i ≥ 1,
and y t1{x ← u}… tn{x ← u} is strongly normalizing as well
Finally t{x ← u} is strongly normalizing

– Case t0 = �y.t′0
Then t → t′ = t′0{y ← t1}t2… tn and ht(t′) < ht(t)
Then by induction hypothesis t′{x ← u} is strongly normalizing
We have

t′{x ← u}
= (t′0{y ← t1}t2… tn){x ← u}
= t′0{x ← u}{y ← t1{x ← u}} t2{x ← u} … tn{x ← u}

By induction hypothesis ti{x ← u} is strongly normalizing for any i
Thus by application lemma t{x ← u} is strongly normalizing

8



– Case t0 = x We have to show that u t1{x ← u} … tn{x ← u} is strongly normalizing
If u →∗ y then we conclude as above
Otherwise u →∗ �y.u0
By induction hypothesis ti{x ← u} is strongly normalizing for any i ≥ 1
To apply the lemma, we have to show that t′ = u0{y ← t1{x ← u}} t2{x ← u} … tn{x ←
u} is strongly normalizing
Trick: t′ = (z t2{x ← u} … tn{x ← u}){z ← u0{y ← t1{x ← u}}} Then we can conclude
by induction hypothesis by just checking that:

∗ z t2{x ← u} … tn{x ← u} is strongly normalizing
(ok since the ti{x ← u} are strongly normalizing)

∗ u0{y ← t1{x ← u}} is strongly normalizing
(We have ty(u) = ty(�x.u0) = � → � and ty(t1{x ← u}) = ty(t1) = � , thus sz(ty(t1{x ←
u})) < sz(ty(u)) Since u0 and t1{x ← u} are strongly normalizing we deduce by induc-
tion hypothesis that u0{y ← t1{x ← u}} is strongly normalizing)

∗ sz(ty(u0{y ← t1{x ← u}})) < sz(ty(u))
(ok since ty(u0{y ← t1{x ← u}}) = ty(u0) = � and ty(u) = ty(�x.u0) = � → � )

7 Denotational semantics

Semantic domains (�-calculus with simple types)
Denotational semantics

• associate to each �-term t a mathematical object s

where the nature of s depends on the type of t
We associate to each type � a set of mathematical values D� called the semantic domain of �

Dbool = B
Dint = ℕ

D�→� = (D� → D� )
where A → B is the set of mathematical functions from A to B

Semantics of terms
Translation by induction on the structure of the term

JxK� = �(x)
J�x.t0K� = a ↦ Jt0K�[x←a]
Jt1 t2K� = Jt1K� Jt2K�

where � is an environment: a function from �-variables towards semantic values, with �[x ← a] de�ned
by

�[x ← a](x) = a
�[x ← a](y) = �(y) si y ≠ x

Note: here x is a �-variable and a is a mathematical variable

Examples

J�x.xK� = a ↦ JxK�[x←a]
= a ↦ (�[x ← a])(x)
= a ↦ a

J�x.�y.xK� = a ↦ J�y.xK�[x←a]
= a ↦ (b ↦ JxK�[x←a][y←b])
= a ↦ (b ↦ (�[x ← a][y ← b])(x))
= a ↦ (b ↦ a)

9



Reduction preserves the semantics
Theorem

If t → t′, then JtK� = Jt′K� for all �

the other direction is subtle
Proof: by induction on t → t′

Extended denotational semantics
Most of the extensions can be added directly

JTK� = vrai
JFK� = faux
JnK� = n

Jt1 ⊕ t2K� = Jt1K� + Jt2K�

JisZero(t)K� =
{

vrai si JtK� = 0
faux si JtK� ≠ 0

...

What about �xpoints?

Scott domains trailer
Extended semantic domaines

• with partially de�ned values

• with an order on the information level of a partially de�ned value min: unde�ned, max: fully
de�ned

• completes: any increasing sequence has a limit

Any function can be completed
Interesting functions: monotone and continuous

• more information on the argument gives more information on the result

• image of a limit = limit of the images

Then we �nd a semantical �xpoint to interpret any term using Knaster-Tarski theorem

10


	Wrong programs
	Simple types
	Type preservation
	Type safety
	Curry-Howard correspondence
	Normalization
	Denotational semantics

