Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay
Fall 2023
https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 4: simply-typed A-calculus

1 Wrong programs

Wrong program in Python

p = (4, 2)
return p[1][0]

Runtime error

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'int' object has no attribute
'__getitem__"'

Wrong program in Caml

let p = (4, 2) in
fst(snd p)

Compile-time error

Error: This expression has type int but an
expression was expected of type 'a * 'b

Wrong A-term

(Ax.m(m2(x))) (Ay<y, (Az.2)2))4)
—o  (Axm(m(x))) <4, (Az.2)2)
—o  (Axm(me(x))) <4,2)

—u m(m({4,2))))

—v 71'1(2)

blocked term: not a value, yet not reducible

Motto Well-typed programs do not go wrong
Connects a static analysis

« expressions have consistent types
with a semantic property

« the programs runs smoothly


https://www.lri.fr/~blsk/LambdaCalculus/

2 Simple types

Typed syntax

Types
o,T := o0 base types
| o—1 function types
Terms
t o= x variable
| Ax°.t typed abstraction
| tt application

Notation 1, — (-1 ...(11 — 170)...) iswritten 7, — 7,_1...71 — 7o

Simple types, a la Church

Typing judgment
I'~t:o
the term ¢ is well typed with type o in the environment I with I': a set of typed variables {x{", ..., xJ"}
xTeT I'x°Fe: 1 I'~e :0—1 e : o
'x:r1 I'-Ax%°e:0—71 I'e e : 71
Simple types, without annotations
Typing judgment
I't:o

the term ¢ is well typed with type o in the environment I" with I': a function from variables to types
{x1 ¢ 01,y Xn = On}

I(x)=r1 I'x :obe: 1 I'e :0—1 IT'He :o

Fr'-x:17 '-Axe:o0—o71 e e : 71

Exercise: examples and counter-examples
Give typing judgments for the following terms, or justify that this cannot be done

o Ax.x
o Axy.x
o Axyz.x(yz)

e Ax.xx

Extended types: integers
New type

| int
New typing rules

't :int I'H1t @ int
I'n:int IT'tieoty: int




Extended types: booleans
New type

New typing rules

T'~T: bool

I'—1t:

I'~F : bool

int

I' +isZero(t) : bool

' ko bool

rl—tgif

rl—tgiT

I'iftythentelsets 1 7

Extended types: products

New type
o, T =
1 X T2
New typing rules
r|—t13T1 rl—tlez
Tt h) X1
I'Ht:mxn I'Ht:oxn
I'tm(t) : o T m(t) : o

Extended types: recursion
New typing rule

't:(c—1)—>(0—1)

I'+Fix(t) : 0 > 1

3 Type preservation

Type preservation: S-reduction

If THt:7 and t—pgt’ then

't

Proof by induction on t —4 t'.

« Case il — t{t; with t; — ]
By inversion of the hypothesis I' - t;1; :

By induction hypothesis T + ] :
tions.

Tt :0—>7

7 thereis o such thatT + #

ro—rtandT 16 : o

o — 7 and one can conclude with the typing rule for applica-

Fl—tg:a

Tty 1



« Case tit; — tt; with t; — t} similar
« Case Ax.ly — Ax.tj with fy — ¢ similar

o Case (Ax.t))ty — ti{x «— B}

By inversion of the hypothesis I' - (Ax.f;)t; : 7 thereis o such thatT - Ax.ty : ¢ — 7 and
' h : 0

and by inversion of ' - Ax.t; : 0 —> 7 wegetl,x : ot : 7

Last step required: combinel',x : o — 1t : TandT + t, : o to conclude something about the type
of ti{x «— t,}
Lemma: substitution preserves types

fTl,x:orFt:7and THu:o0 then I'-t{x«—u}: 1

Substitution and types
If I'x:ort:7 and TH+u: o then

F'-t{x<«—u}:1
Proof by induction on the derivation of T, x : o 1 : T

« Case where t is a variable

- Casel'x :obx:7twitho=r1
Then x{x <~ u} =uandT'+u:0=1

- CaselLx: oy :rtwithx# yandI(y) =1
Then y{x «— u} =yandT'+y : 7

e Casellx:or-titp: 7 withlx: 0o+t :0c—rtand,x: o1 : o
and induction hypothesesT - f1{x «— u} : 0 > rand T+ f{x — u} : o

We deduce T' + (t1{x «— u}) ({x < u}) : 7, which allows us to conclude since (t;{x «—
u}) ({x < u}) = (h ){x — u}

e Casel,x: oAy .t: 7 > 1 withD,x : 0,y : T/t : 1
and induction hypothesis T,y : 7/ + t{x «— u} : 7
THenT + )Lyf/.(t{x —u}):rt

By a-renaming we assume y # x and y ¢ fv(u), therefore (/lyf/.t){x «— u} = Ayf’.(t{x — u}),
and we conclude with the former judgment

Reduction preserves types
Consequences

« If a term has a type, it will keep it along S-reduction

« If a term has a type and a normal form, the normal form has the same type

4 Type safety

Safety
Evaluation of a term should never see an inconsistent operation

« reduction never blocked before reaching a value

Simple statement: if t is not a value, then there is t’ such that t — t’



Type safety
Progress lemma

If - t : 7 and t is not a value then there is + such that t — #/

Using also the type preservation lemma we deduce - ¢’ : 7, and we can go on
Safety theorem
If—t: 7, then

« either thereist — t; — ... — t, with t, a value

« or there is an infinite reduction sequence t — t; — f, — ...

Progress lemma for A-calculus + pairs (call by value)
The property

If - t : 7 then either ¢ is a value or there is t’ with t —, ¢’
is proved by induction on the derivation of -t : 7

e CaseT'+x : twithI['(x) =17

Impossible since we consider only the empty environment

e CaseAxty : 0o > twithx : oty : 7

Then t = Ax.ty is a value

e Case—<{t;, Y : qixmpwith—# : mand 4 : &

By induction hypothesis on - #; : 7; we have:

— either there is ] with t; — t] and then {1, ) —, {t], 1)
— or t; is a value v;

Then by induction hypothesis on - #, : 7, we have:

« either there is #] with & — #} and then vy, ) —¢ (01, 1)

* or Iy is a value vy and then (v, v9) is a value

e Caset tity : Twith—t : 0o > rand+t : o

As in the previous case:

— either there is ¢{ with t; — ¢/, and then t;, —, t]t,
— or t is a value vy, and in this case
« either there is #; with f; — #}, and then v1t; — v1}
* or fy is a value vy Then we want to prove that v; v, reduces
Classification lemma: if a is a value andT —t : ¢ — © then a has the shape Ax.a’
By classification lemma, there are x, #{ such that vy = Ax.t{ and therefore (Ax.t{)vy — 4 ] {x «
v2 }

« Case - m(ty) : ©y with - fy : 7y x 7 By induction hypothesis we have:

— either there is #; with ty — {, and then m(t)) — m1(#)
— or tj is a value vy, and we want to prove that m;(vp) reduces

Classification lemma: if a is a value andT - a : 11 x 1 then a has the shape {ay, az)

By classification lemma there are v, v, such that vy = vy, v;) and therefore m; (v, v2)) —»
(%!

o Case  m(ty) : 7 with -ty : 77 x 7, is similar



5 Curry-Howard correspondence
Programs = proofs

types A-calculus

trailer

Natural deduction

I'(x)=1 el
'x:1 -7
ILx:oke:T Lokt
I'HAxe:o0—>71 Fo=r1
e :t0—1 e : o I'o=71 I'~o
I'Hee: 1 I'—1

T : type
- : typability

7 : formula
I : provability

Many proof assistants are built upon this correspondence

6 Normalization

Normalization

Does reduction actually make something smaller?
Theorm

IfT 1t : 7, then t is strongly normalizing.

Normalization theorem: a syntactic proof?
IfT' ¢t : 7, then t is strongly normalizing.
Proof attempt using structural induction on t

+ Case of a variable: x is strongly normalizable
« Case of an abstraction: if #j is strongly normalizing, then so is Ax.ty
« Case of an application: if #; and t; are both strongly normalizing, then...
hty —p (Ax.t))t —p (Ax.t))ty —p ti{x — ty} —5???

Problem: t{{x «— t}} is not a subterm of ¢, so we have no induction hypothesis available

Lemma

If t and u are well-typed and strongly normalizing, then t{x «— u} is strongly normalizing

Exercise: preservation of normalization by reduction
If ¢ is strongly normalizing and t —" ¢’ then t’ is strongly normalizing
If ¢ is normalizable and ¢t —" ¢’ then ¢’ is normalizable

If s and t are strongly normalizing and not st then there are x, s” such that s —" Ax.s" and s’ {x « t}
is not strongly normalizing



Application lemma
Lemma

If s, t and u are strongly normalizing but stu is not, then there are x, s’ such that s —* Ax.s” and
s’{x « t}u is not strongly normalizing

Rephrasing using contraposition If

« s, t and u are strongly normalizing
o s " Axs

o §’{x « t}u is strongly normalizing

then stu is strongly normalizing

Well-founded order
Order relation (E, <): binary relation < on the set E that is:

« reflexive Vx€E x<x
« antisymmetric VX, yE€EE xsynysx=x=y
« transitive Vx,y,z€EE, x<yAnysz=>x=<z

Strict order
X<y <<SXsSYAXEY

Well-founded order: no infinite strictly decreasing chain
Xo > X1 > X2 > ...

Alternative characterization: every non-empty subset of E has a minimal element

Well-founded induction
Context: well-founded order (E, <)
For any predicate P on E

(Vx €E,(Vy € E,y < x = P(y)) = P(x)) = Vx € E, P(x)

Goal: proving a property of the shape Vx € E, P(x)
Letx€ E

« assume P(y) true for all y < x (induction hypotheses)

« show that P(x) holds

Question: where is the base case of this induction?

Lexicographic order
Lexicographic product of two orders (A, <4) and (B, <p): order on A x B defined by the condition

(a,b)<(d,V) = a<adv(a=drbspl)
Property

the lexicographic product of two well-founded orders is a well-founded order

Consequence: induction on a lexicographic order is valid



Exercise: Ackermann function
The Ackermann function is described by the following equations

ack(0,n) = n+1
ack(m + 1,0) ack(m, 1)
ack(m+1,n+1) ack(m, ack(m + 1, n))

Show that ack(m, n) is indeed defined for any m,n € N

Lemma: preservation of normalization by substitution
Lemma

If t and u are well-typed and strong normalizing then t{x «— u} is strongly normalizing

By induction on the lexicographic product
(sz(ty(u)), ht(t), sz(t))
where
o ty(u) is the type of u
« sz(a) is the size of a (numbers of nodes in the syntactic tree)

« ht(t) is the length of the longest reduction sequence starting from ¢

Proof
By case on the shape of ¢

« Case of a variable

— Case t = x then x{x < u} = u, strongly normalizing by hypothesis

— Case t = y with y # x then y{x < u} = y, strongly normalizing

« Case of an abstraction: t = Ax.f
Then ht(t) = ht(¢) and sz(ty) < sz(t) and then (sz(ty(u)), ht(t), sz(ty)) < (sz(ty(w)), ht(t), sz(1))
By induction hypothesis, to{x «— u} is strongly normalizing

Thus t{x < u} = Ax.(fo{x < u}) is strongly normalizing.

« Case of an application: t = tyt1; ... t, with # not an application

Case on Iy

— Case fy = ywith y # x
Each reductions of t is in one of the t; with i = 1 thus ht(¢;) < ht(¢) for all i = 1, moreover
sz(t;) < sz(t) forall i = 1.
Thus by induction hypothesis t;{x < u} is strongly normalizing i > 1,
and y ti{x < u} ... t,{x < u} is strongly normalizing as well
Finally t{x <« u} is strongly normalizing
— Case fy = Ay.1;
Then t — t/ = t){y < t1}f ... t, and ht(’) < ht(z)
Then by induction hypothesis t'{x «— u} is strongly normalizing

We have
t'{x — u}
(t{y «— ti}tr ... ty){x «— u}
t{x — ul{y «— ti{x — u}} to{x — u} ... th{x — u}

By induction hypothesis t;{x «<— u} is strongly normalizing for any i

Thus by application lemma t{x «— u} is strongly normalizing



- Case t) = x We have to show that u t;{x < u} ... t,{x < u} is strongly normalizing
If u —" y then we conclude as above
Otherwise u —"* Ay.ug
By induction hypothesis t;{x «— u} is strongly normalizing for any i > 1
To apply the lemma, we have to show that ¢’ = uy{y «— t1{x «— u}} t{x «— u} ... f,{x «—
u} is strongly normalizing
Trick: t' = (z {x «— u} ... ty{x «— u}){z «— wy{y < t1{x < u}}} Then we can conclude
by induction hypothesis by just checking that:
x z b{x «— u} ... t,{x < u} is strongly normalizing
(ok since the t;{x «— u} are strongly normalizing)
« Up{y «— ti{x «<— u}} is strongly normalizing
(We have ty(u) = ty(Ax.up) = 0 — v and ty(t;{x <« u}) = ty(#;) = o, thus sz(ty(¢; {x «—
u})) < sz(ty(u)) Since uy and t;{x «<— u} are strongly normalizing we deduce by induc-
tion hypothesis that uy{y <— #;{x «<— u}} is strongly normalizing)

» sz(ty(up{y < ti{x « u}})) < sz(ty(u))
(ok since ty(up{y «— ti{x < u}}) = ty(up) = 7 and ty(u) = ty(Ax.up) = 0 — 1)

7 Denotational semantics

Semantic domains (A-calculus with simple types)
Denotational semantics

« associate to each A-term t a mathematical object s

where the nature of s depends on the type of ¢
We associate to each type 7 a set of mathematical values D called the semantic domain of ©

Dbool = B
Dint = N
pD°—T = (DO’ — Dr)

where A — B is the set of mathematical functions from A to B

Semantics of terms
Translation by induction on the structure of the term

[x], = P
[Ax.%], a = [to] prxe—a
[t ], = [tl, [2],
where p is an environment: a function from A-variables towards semantic values, with p[x «— a] defined
by

plx < a](x) a
plx < al(y) ply) siy#x
Note: here x is a A-variable and a is a mathematical variable

Examples

[Axx], = aw ﬂx]]p[x(_a]
= a > (p[x < a])(x)
= ar—a
[AxAy.x], = aw> [AyX]ppe—a
= a—> (b [x]preay—s)
= ar> (b (p[x <« a]ly < b])(x))

= ar—(b—a)



Reduction preserves the semantics
Theorem

If t — t/, then [t], = [t'], for all p

Proof: by induction on ¢ — ¢/

Extended denotational semantics
Most of the extensions can be added directly

[T],
[FI,
[nl, =

[tie ],

lisZero(1)],

vrai
faux

n

(6], + [&],
vrai si[t], =0
faux sit], #0

What about fixpoints?

Scott domains
Extended semantic domaines

« with partially defined values

 with an order on the information level of a partially defined value

defined
« completes: any increasing sequence has a limit

Any function can be completed
Interesting functions: monotone and continuous

the other direction is subtle

trailer

min: undefined, max: fully

+ more information on the argument gives more information on the result

« image of a limit = limit of the images

Then we find a semantical fixpoint to interpret any term

10

using Knaster-Tarski theorem



	Wrong programs
	Simple types
	Type preservation
	Type safety
	Curry-Howard correspondence
	Normalization
	Denotational semantics

