Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay Fall 2023 https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 4: simply-typed λ **-calculus**

1 Wrong programs

Wrong program in Python

p = (4, 2)
return p[1][0]
Runtime error
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'int' object has no attribute
 '__getitem__'

Wrong program in Caml

let p = (4, 2) in
fst(snd p)

Compile-time error

Error: This expression has **type** int but an expression was expected **of type** 'a * 'b

Wrong λ -term

 $\begin{array}{l} (\lambda x.\pi_1(\pi_2(x))) \ ((\lambda y.\langle y, (\lambda z.z)2\rangle)4) \\ \rightarrow_{\upsilon} \ (\lambda x.\pi_1(\pi_2(x))) \ \langle 4, (\lambda z.z)2\rangle \\ \rightarrow_{\upsilon} \ (\lambda x.\pi_1(\pi_2(x))) \ \langle 4, 2\rangle \\ \rightarrow_{\upsilon} \ \pi_1(\pi_2(\langle 4, 2\rangle))) \\ \rightarrow_{\upsilon} \ \pi_1(2) \end{array}$

blocked term: not a value, yet not reducible

Motto

Connects a static analysis

Well-typed programs do not go wrong

• expressions have consistent types

with a semantic property

• the programs runs smoothly

2 Simple types

Ty	ped	sy	nt	ax

Types

Torme	
Terms	

 $\begin{array}{ccc} \sigma,\tau & ::= & o & & \text{base types} \\ & \mid & \sigma \to \tau & & \text{function types} \end{array}$

 $\begin{array}{rcl}t & ::= & x & \text{variable} \\ & \mid & \lambda x^{\sigma}.t & \text{typed abstraction} \\ & \mid & t_1 & t_2 & \text{application} \end{array}$ Notation $& \tau_n \rightarrow (\tau_{n-1} \dots (\tau_1 \rightarrow \tau_0) \dots) & \text{is written} & \tau_n \rightarrow \tau_{n-1} \dots \tau_1 \rightarrow \tau_0$

Simple types, à la Church

Typing judgment

 $\Gamma \vdash t : \sigma$

the term *t* is well typed with type σ in the environment Γ with Γ : a set of typed variables $\{x_1^{\sigma_1}, \dots, x_n^{\sigma_n}\}$

$x^{\tau} \in \Gamma$	$\Gamma, x^{\sigma} \vdash e : au$	$\Gamma \vdash e_1 : \sigma \longrightarrow \tau \qquad \Gamma \vdash e_2 : \sigma$
$\overline{\Gamma \vdash x : \tau}$	$\overline{\Gamma \vdash \lambda x^{\sigma}.e : \sigma \longrightarrow \tau}$	$\Gamma \vdash e_1 \ e_2 \ : \ \tau$

Simple types, without annotations

Typing judgment

$$\Gamma \vdash t : \sigma$$

the term *t* is well typed with type σ in the environment Γ with Γ : a function from variables to types $\{x_1 : \sigma_1, \ldots, x_n : \sigma_n\}$

 $\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \qquad \qquad \frac{\Gamma, x : \sigma \vdash e : \tau}{\Gamma \vdash \lambda x. e : \sigma \to \tau} \qquad \qquad \frac{\Gamma \vdash e_1 : \sigma \to \tau \qquad \Gamma \vdash e_2 : \sigma}{\Gamma \vdash e_1 : e_2 : \tau}$

Exercise: examples and counter-examples

Give typing judgments for the following terms, or justify that this cannot be done

• $\lambda x.x$

• $\lambda x y. x$

- $\lambda x y z. x(yz)$
- $\lambda x.xx$

Extended types: integers

New type

$$\sigma, \tau \quad ::= \quad \dots \\ | \qquad \text{int} \quad$$

New typing rules

$$\frac{\Gamma \vdash t_1 : \text{ int } \qquad \Gamma \vdash t_2 : \text{ int }}{\Gamma \vdash t_1 \oplus t_2 : \text{ int }}$$

Extended types: booleans

New type

$$\sigma, \tau$$
 ::= ...
| bool

New typing rules

$$\Gamma \vdash \mathsf{T} : \mathsf{bool} \qquad \qquad \Gamma \vdash \mathsf{F} : \mathsf{bool}$$

$$\frac{\Gamma \vdash t : \text{ int}}{\Gamma \vdash \text{isZero}(t) : \text{bool}}$$

$$\frac{\Gamma \vdash t_1 : \text{bool} \quad \Gamma \vdash t_2 : \tau \quad \Gamma \vdash t_3 : \tau}{\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : \tau}$$

Extended types: products

New type

$$\begin{array}{ccc} \sigma, \tau & \colon \colon = & \dots \\ & | & \tau_1 \times \tau_2 \end{array}$$

New typing rules

$$\frac{\Gamma \vdash t_1 \,:\, \tau_1 \qquad \Gamma \vdash t_2 \,:\, \tau_2}{\Gamma \vdash \langle t_1, t_2 \rangle \,:\, \tau_1 \times \tau_2}$$

$$\frac{\Gamma \vdash t : \tau_1 \times \tau_2}{\Gamma \vdash \pi_1(t) : \tau_1} \qquad \qquad \frac{\Gamma \vdash t : \tau_1 \times \tau_2}{\Gamma \vdash \pi_2(t) : \tau_2}$$

Extended types: recursion

New typing rule

$$\frac{\Gamma \vdash t : (\sigma \to \tau) \to (\sigma \to \tau)}{\Gamma \vdash \mathsf{Fix}(t) : \sigma \to \tau}$$

3 Type preservation

Type preservation: β -reduction

If $\Gamma \vdash t : \tau$ and $t \rightarrow_{\beta} t'$ then

$$\Gamma \vdash t' \,:\, \tau$$

Proof by induction on $t \rightarrow_{\beta} t'$.

• Case $t_1 t_2 \rightarrow t'_1 t_2$ with $t_1 \rightarrow t'_1$

By inversion of the hypothesis $\Gamma \vdash t_1 t_2 : \tau$ there is σ such that $\Gamma \vdash t_1 : \sigma \to \tau$ and $\Gamma \vdash t_2 : \sigma$ By induction hypothesis $\Gamma \vdash t'_1 : \sigma \to \tau$ and one can conclude with the typing rule for applications.

$$\frac{\Gamma \vdash t_1' : \sigma \longrightarrow \tau \qquad \Gamma \vdash t_2 : \sigma}{\Gamma \vdash t_1' t_2 : \tau}$$

- Case $t_1 t_2 \rightarrow t_1 t'_2$ with $t_2 \rightarrow t'_2$ similar
- Case $\lambda x.t_0 \rightarrow \lambda x.t_0'$ with $t_0 \rightarrow t_0'$ similar
- Case $(\lambda x.t_1)t_2 \rightarrow t_1\{x \leftarrow t_2\}$ By inversion of the hypothesis $\Gamma \vdash (\lambda x.t_1)t_2 : \tau$ there is σ such that $\Gamma \vdash \lambda x.t_1 : \sigma \rightarrow \tau$ and $\Gamma \vdash t_2 : \sigma$

and by inversion of $\Gamma \vdash \lambda x.t_1 : \sigma \rightarrow \tau$ we get $\Gamma, x : \sigma \vdash t_1 : \tau$

Last step required: combine $\Gamma, x : \sigma \vdash t_1 : \tau$ and $\Gamma \vdash t_2 : \sigma$ to conclude something about the type of $t_1 \{x \leftarrow t_2\}$

Lemma: substitution preserves types

If $\Gamma, x : \sigma \vdash t : \tau$ and $\Gamma \vdash u : \sigma$ then $\Gamma \vdash t\{x \leftarrow u\} : \tau$

Substitution and types

If $\Gamma, x : \sigma \vdash t : \tau$ and $\Gamma \vdash u : \sigma$ then

$$\Gamma \vdash t\{x \leftarrow u\} \,:\, \tau$$

Proof by induction on the derivation of Γ , $x : \sigma \vdash t : \tau$

- Case where *t* is a variable
 - Case $\Gamma, x : \sigma \vdash x : \tau$ with $\sigma = \tau$ Then $x \{ x \leftarrow u \} = u$ and $\Gamma \vdash u : \sigma = \tau$
 - Case $\Gamma, x : \sigma \vdash y : \tau$ with $x \neq y$ and $\Gamma(y) = \tau$ Then $y\{x \leftarrow u\} = y$ and $\Gamma \vdash y : \tau$
- Case Γ, x : σ ⊢ t₁ t₂ : τ with Γ, x : σ ⊢ t₁ : σ → τ and Γ, x : σ ⊢ t₂ : σ and induction hypotheses Γ ⊢ t₁{x ← u} : σ → τ and Γ ⊢ t₂{x ← u} : σ
 We deduce Γ ⊢ (t₁{x ← u}) (t₂{x ← u}) : τ, which allows us to conclude since (t₁{x ← u}) (t₂{x ← u}) = (t₁ t₂){x ← u}
- Case $\Gamma, x : \sigma \vdash \lambda y^{\tau'} \cdot t : \tau' \to \tau$ with $\Gamma, x : \sigma, y : \tau' \vdash t : \tau$ and induction hypothesis $\Gamma, y : \tau' \vdash t\{x \leftarrow u\} : \tau$ THen $\Gamma \vdash \lambda y^{\tau'} \cdot (t\{x \leftarrow u\}) : \tau$

By α -renaming we assume $y \neq x$ and $y \notin fv(u)$, therefore $(\lambda y^{\tau'}.t)\{x \leftarrow u\} = \lambda y^{\tau'}.(t\{x \leftarrow u\})$, and we conclude with the former judgment

Reduction preserves types

Consequences

- If a term has a type, it will keep it along β -reduction
- If a term has a type and a normal form, the normal form has the same type

4 Type safety

Safety

Evaluation of a term should never see an inconsistent operation

reduction never blocked before reaching a value

Simple statement:

if t is not a value, then there is t' such that $t \rightarrow t'$

Type safety

Progress lemma

If $\vdash t$: τ and t is not a value then there is t' such that $t \rightarrow t'$

Using also the type preservation lemma we deduce $\vdash t' : \tau$, and we can go on Safety theorem If $\vdash t : \tau$, then

 $\Pi \vdash \iota \cdot \iota, \Pi \Pi$

- either there is $t \to t_1 \to \dots \to t_n$ with t_n a value
- or there is an infinite reduction sequence $t \rightarrow t_1 \rightarrow t_2 \rightarrow ...$

Progress lemma for λ -calculus + pairs (call by value)

The property

If $\vdash t : \tau$ then either *t* is a value or there is *t'* with $t \rightarrow_v t'$

is proved by induction on the derivation of $\vdash t : \tau$

• Case $\Gamma \vdash x : \tau$ with $\Gamma(x) = \tau$

Impossible since we consider only the empty environment

• Case $\vdash \lambda x.t_0 : \sigma \to \tau \text{ with } x : \sigma \vdash t_0 : \tau$

Then $t = \lambda x \cdot t_0$ is a value

• Case $\vdash \langle t_1, t_2 \rangle$: $\tau_1 \times \tau_2$ with $\vdash t_1$: τ_1 and $\vdash t_1$: τ_2

By induction hypothesis on $\vdash t_1 : \tau_1$ we have:

- either there is t'_1 with $t_1 \rightarrow t'_1$ and then $\langle t_1, t_2 \rangle \rightarrow_v \langle t'_1, t_2 \rangle$
- or t_1 is a value v_1

Then by induction hypothesis on $\vdash t_2 : \tau_2$ we have:

- * either there is t'_2 with $t_2 \rightarrow t'_2$ and then $\langle v_1, t_2 \rangle \rightarrow_v \langle v_1, t'_2 \rangle$
- * or t_2 is a value v_2 and then $\langle v_1, v_2 \rangle$ is a value
- Case $\vdash t_1 t_2 : \tau$ with $\vdash t_1 : \sigma \to \tau$ and $\vdash t_2 : \sigma$

As in the previous case:

- either there is t'_1 with $t_1 \rightarrow t'_1$, and then $t_1 t_2 \rightarrow_v t'_1 t_2$
- or t_1 is a value v_1 , and in this case
 - * either there is t'_2 with $t_2 \rightarrow t'_2$, and then $v_1 t_2 \rightarrow_v v_1 t'_2$
 - * or t_2 is a value v_2 Then we want to prove that $v_1 v_2$ reduces *Classification lemma: if a is a value and* $\Gamma \vdash t : \sigma \rightarrow \tau$ *then a has the shape* $\lambda x.a'$ By classification lemma, there are x, t'_1 such that $v_1 = \lambda x.t'_1$ and therefore $(\lambda x.t'_1)v_2 \rightarrow_v t'_1 \{x \leftarrow v_2\}$
- Case $\vdash \pi_1(t_0)$: τ_1 with $\vdash t_0$: $\tau_1 \times \tau_2$ By induction hypothesis we have:
 - either there is t'_0 with $t_0 \rightarrow t'_0$, and then $\pi_1(t_0) \rightarrow_{\upsilon} \pi_1(t'_0)$
 - or t₀ is a value v₀, and we want to prove that π₁(v₀) reduces *Classification lemma: if a is a value and* Γ ⊢ a : τ₁ × τ₂ *then a has the shape* ⟨a₁, a₂⟩
 By classification lemma there are v₁, v₂ such that v₀ = ⟨v₁, v₂⟩ and therefore π₁(⟨v₁, v₂⟩) →_v
 v₁
- Case $\vdash \pi_2(t_0)$: τ_2 with $\vdash t_0$: $\tau_1 \times \tau_2$ is similar

5 Curry-Howard correspondence

Programs = proofs

types λ -calculus

Natural deduction

$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau}$	$\frac{\tau \in \Gamma}{\Gamma \vdash \tau}$
$\frac{\Gamma, x : \sigma \vdash e : \tau}{\Gamma \vdash \lambda x.e : \sigma \longrightarrow \tau}$	$\frac{\Gamma, \sigma \vdash \tau}{\Gamma \vdash \sigma \Rightarrow \tau}$
$\frac{\Gamma \vdash e_1 : \sigma \longrightarrow \tau \qquad \Gamma \vdash e_2 : \sigma}{\Gamma \vdash e_1 e_2 : \tau}$	$\frac{\Gamma \vdash \sigma \Longrightarrow \tau \qquad \Gamma \vdash \sigma}{\Gamma \vdash \tau}$
τ : type \vdash : typability	au : formula \vdash : provability

Many proof assistants are built upon this correspondence

6 Normalization

Normalization

Does reduction actually make something smaller? Theorm

If $\Gamma \vdash t : \tau$, then t is strongly normalizing.

Normalization theorem: a syntactic proof?

If $\Gamma \vdash t : \tau$, then *t* is strongly normalizing. *Proof attempt using structural induction on t*

- Case of a variable: *x* is strongly normalizable
- Case of an abstraction: if t_0 is strongly normalizing, then so is $\lambda x.t_0$
- Case of an application: if t_1 and t_2 are both strongly normalizing, then...

$$t_1 t_2 \to^*_{\beta} (\lambda x. t_1') t_2 \to^*_{\beta} (\lambda x. t_1') t_2' \to_{\beta} t_1' \{ x \leftarrow t_2' \} \to_{\beta} ???$$

Problem: $t'_1 \{x \leftarrow t'_2\}$ is not a subterm of *t*, so we have no induction hypothesis available

Lemma

If *t* and *u* are well-typed and strongly normalizing, then $t\{x \leftarrow u\}$ is strongly normalizing

Exercise: preservation of normalization by reduction

If *t* is strongly normalizing and $t \rightarrow^* t'$ then *t'* is strongly normalizing

If *t* is normalizable and $t \rightarrow^* t'$ then *t'* is normalizable

If *s* and *t* are strongly normalizing and not *st* then there are *x*, *s'* such that $s \rightarrow^* \lambda x.s'$ and $s'\{x \leftarrow t\}$ is not strongly normalizing

trailer

Application lemma

Lemma

If s, t and \vec{u} are strongly normalizing but $st\vec{u}$ is not, then there are x, s' such that $s \rightarrow^* \lambda x.s'$ and $s'\{x \leftarrow t\}\vec{u}$ is not strongly normalizing

Rephrasing using contraposition If

- *s*, *t* and \vec{u} are strongly normalizing
- $s \rightarrow^* \lambda x.s'$
- $s'\{x \leftarrow t\}\vec{u}$ is strongly normalizing

then $st\vec{u}$ is strongly normalizing

Well-founded order

Order relation (E, \leq) : binary relation \leq on the set *E* that is:

- reflexive $\forall x \in E, x \le x$
- antisymmetric $\forall x, y \in E, x \le y \land y \le x \Longrightarrow x = y$
- transitive

Strict order

$$x < y \iff x \le y \land x \ne y$$

Well-founded order: no infinite strictly decreasing chain

 $x_0 > x_1 > x_2 > \dots$

Alternative characterization: every non-empty subset of E has a minimal element

Well-founded induction

Context: well-founded order (E, \leq) For any predicate *P* on *E*

$$(\forall x \in E, (\forall y \in E, y < x \Longrightarrow P(y)) \Longrightarrow P(x)) \Longrightarrow \forall x \in E, P(x)$$

Goal: proving a property of the shape $\forall x \in E, P(x)$ Let $x \in E$

- assume P(y) true for all y < x (induction hypotheses)
- show that P(x) holds

Question: where is the base case of this induction?

 $\forall x, y, z \in E, x \leq y \land y \leq z \Longrightarrow x \leq z$

Lexicographic order

Lexicographic product of two orders (A, \leq_A) and (B, \leq_B) : order on $A \times B$ defined by the condition

 $(a, b) \leq (a', b') \iff a <_A a' \lor (a = a' \land b \leq_B b')$

Property

the lexicographic product of two well-founded orders is a well-founded order

Consequence: induction on a lexicographic order is valid

Exercise: Ackermann function

The Ackermann function is described by the following equations

$$ack(0, n) = n + 1$$

 $ack(m + 1, 0) = ack(m, 1)$
 $ack(m + 1, n + 1) = ack(m, ack(m + 1, n))$

Show that ack(m, n) is indeed defined for any $m, n \in \mathbb{N}$

Lemma: preservation of normalization by substitution

Lemma

If *t* and *u* are well-typed and strong normalizing then $t\{x \leftarrow u\}$ is strongly normalizing

By induction on the lexicographic product

where

- ty(u) is the type of u
- sz(*a*) is the size of *a* (numbers of nodes in the syntactic tree)
- ht(*t*) is the length of the longest reduction sequence starting from *t*

Proof

By case on the shape of t

- Case of a variable
 - Case t = x then $x\{x \leftarrow u\} = u$, strongly normalizing by hypothesis
 - Case t = y with $y \neq x$ then $y\{x \leftarrow u\} = y$, strongly normalizing
- Case of an abstraction: $t = \lambda x \cdot t_0$

Then $ht(t_0) = ht(t)$ and $sz(t_0) < sz(t)$ and then $(sz(ty(u)), ht(t_0), sz(t_0)) < (sz(ty(u)), ht(t), sz(t))$ By induction hypothesis, $t_0\{x \leftarrow u\}$ is strongly normalizing Thus $t\{x \leftarrow u\} = \lambda x.(t_0\{x \leftarrow u\})$ is strongly normalizing.

• Case of an application: $t = t_0 t_1 t_2 \dots t_n$ with t_0 not an application

Case on t_0

Case t₀ = y with y ≠ x Each reductions of t is in one of the t_i with i ≥ 1 thus ht(t_i) ≤ ht(t) for all i ≥ 1, moreover sz(t_i) < sz(t) for all i ≥ 1. Thus by induction hypothesis t_i{x ← u} is strongly normalizing i ≥ 1, and y t₁{x ← u} ... t_n{x ← u} is strongly normalizing as well Finally t{x ← u} is strongly normalizing
Case t₀ = λy.t₀' Then t → t' = t₀'{y ← t₁}t₂... t_n and ht(t') < ht(t) Then by induction hypothesis t'{x ← u} is strongly normalizing

We have

$$t' \{ x \leftarrow u \}$$

= $(t'_0 \{ y \leftarrow t_1 \} t_2 \dots t_n) \{ x \leftarrow u \}$
= $t'_0 \{ x \leftarrow u \} \{ y \leftarrow t_1 \{ x \leftarrow u \} \} t_2 \{ x \leftarrow u \} \dots t_n \{ x \leftarrow u \}$

By induction hypothesis $t_i \{x \leftarrow u\}$ is strongly normalizing for any *i* Thus by application lemma $t\{x \leftarrow u\}$ is strongly normalizing

- Case t₀ = x We have to show that u t₁{x ← u} ... t_n{x ← u} is strongly normalizing If u →* y then we conclude as above Otherwise u →* λy.u₀
 By induction hypothesis t_i{x ← u} is strongly normalizing for any i ≥ 1
 To apply the lemma, we have to show that t' = u₀{y ← t₁{x ← u}} t₂{x ← u} ... t_n{x ← u} is strongly normalizing
 Trick: t' = (z t₂{x ← u} ... t_n{x ← u}){z ← u₀{y ← t₁{x ← u}}} Then we can conclude by induction hypothesis by just checking that:
 * z t₂{x ← u} ... t_n{x ← u} is strongly normalizing
 (ok since the t_i{x ← u} are strongly normalizing)
 - *u*₀{*y* ← *t*₁{*x* ← *u*}} is strongly normalizing
 (We have ty(*u*) = ty(*λx.u*₀) = σ → τ and ty(*t*₁{*x* ← *u*}) = ty(*t*₁) = σ, thus sz(ty(*t*₁{*x* ← *u*})) < sz(ty(*u*)) Since *u*₀ and *t*₁{*x* ← *u*} are strongly normalizing we deduce by induction hypothesis that *u*₀{*y* ← *t*₁{*x* ← *u*}} is strongly normalizing)
 - * $sz(ty(u_0 \{ y \leftarrow t_1 \{ x \leftarrow u \} \})) < sz(ty(u))$ (ok since $ty(u_0 \{ y \leftarrow t_1 \{ x \leftarrow u \} \}) = ty(u_0) = \tau$ and $ty(u) = ty(\lambda x.u_0) = \sigma \rightarrow \tau$)

7 Denotational semantics

Semantic domains (λ -calculus with simple types)

Denotational semantics

• associate to each λ -term t a mathematical object s

where the nature of s depends on the type of t

We associate to each type τ a set of mathematical values D^{τ} called the *semantic domain* of τ

$$\begin{aligned} D^{\text{bool}} &= \mathbb{B} \\ D^{\text{int}} &= \mathbb{N} \\ D^{\sigma \to \tau} &= (D^{\sigma} \to D^{\tau}) \end{aligned}$$

where $A \rightarrow B$ is the set of mathematical functions from *A* to *B*

Semantics of terms

Translation by induction on the structure of the term

$$\begin{split} \llbracket x \rrbracket_{\rho} &= \rho(x) \\ \llbracket \lambda x. t_0 \rrbracket_{\rho} &= a \mapsto \llbracket t_0 \rrbracket_{\rho[x \leftarrow a]} \\ \llbracket t_1 \ t_2 \rrbracket_{\rho} &= \llbracket t_1 \rrbracket_{\rho} \llbracket t_2 \rrbracket_{\rho} \end{split}$$

where ρ is an *environment*: a function from λ -variables towards semantic values, with $\rho[x \leftarrow a]$ defined by

$$\rho[x \leftarrow a](x) = a$$

$$\rho[x \leftarrow a](y) = \rho(y) \quad \text{si } y \neq x$$

Note: here *x* is a λ -variable and *a* is a mathematical variable

Examples

$$\begin{split} \llbracket \lambda x.x \rrbracket_{\rho} &= a \mapsto \llbracket x \rrbracket_{\rho[x \leftarrow a]} \\ &= a \mapsto (\rho[x \leftarrow a])(x) \\ &= a \mapsto a \\ \llbracket \lambda x.\lambda y.x \rrbracket_{\rho} &= a \mapsto \llbracket \lambda y.x \rrbracket_{\rho[x \leftarrow a]} \\ &= a \mapsto (b \mapsto \llbracket x \rrbracket_{\rho[x \leftarrow a][y \leftarrow b]}) \\ &= a \mapsto (b \mapsto (\rho[x \leftarrow a][y \leftarrow b])(x)) \\ &= a \mapsto (b \mapsto a) \end{split}$$

Reduction preserves the semantics

Theorem

If
$$t \to t'$$
, then $\llbracket t \rrbracket_{\rho} = \llbracket t' \rrbracket_{\rho}$ for all ρ

the other direction is subtle

Proof: by induction on $t \rightarrow t'$

Extended denotational semantics

Most of the extensions can be added directly

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\rho} = \text{vrai} \\ \begin{bmatrix} \mathbf{F} \end{bmatrix}_{\rho} = \text{faux} \\ \begin{bmatrix} n \end{bmatrix}_{\rho} = n \\ \begin{bmatrix} t_1 \oplus t_2 \end{bmatrix}_{\rho} = \begin{bmatrix} t_1 \end{bmatrix}_{\rho} + \begin{bmatrix} t_2 \end{bmatrix}_{\rho} \\ \begin{bmatrix} \text{isZero}(t) \end{bmatrix}_{\rho} = \begin{cases} \text{vrai} & \text{si} \begin{bmatrix} t \end{bmatrix}_{\rho} = 0 \\ \text{faux} & \text{si} \begin{bmatrix} t \end{bmatrix}_{\rho} \neq 0 \end{cases}$$

What about fixpoints?

Scott domains

Extended semantic domaines

- with partially defined values
- with an order on the information level of a partially defined value *min: undefined, max: fully defined*
- completes: any increasing sequence has a limit

Any function can be completed

Interesting functions: monotone and continuous

- more information on the argument gives more information on the result
- image of a limit = limit of the images

Then we find a semantical fixpoint to interpret any term using Knaster-Tarski theorem

trailer