
Lambda-calculus and programming language semantics
Thibaut Balabonski @ UPSay
Winter 2023
https://public.lmf.cnrs.fr/∼blsk/LambdaCalculus/

Chapter 5: implementing the �-calculus
1 Interpretation

Following the operational semantics of the �-calculus, we can de�ne an interpreter, that is a function
that takes as input a �-term and returns the value computed by this term.

Terms:
t ∶∶= c constant

| x variable
| �x.t abstraction
| t u application

Values:
v ∶∶= c

| �x.t

Call by value, small-step semantics. We de�ne a reduction relation t → t′ describing one step of
reduction. Call-by-value evaluation: evaluate the argument before resolving a function application. The
�rst rule only applies if the argument is a value v.

(�x.t) v → t{x ← v}
t →� t′

t u → t′ u
u →� u′

v u → v u′

The last rule only applies if the le� member of the application is a value v. This forces evaluation from
le� to right. Note that we never reduce under �-abstractions, and that we do not expect to reach a free
variable.

Evaluation is done through a sequence of such steps:

t →∗ v

We could de�ne an interpreter performing sequences of steps, following this de�nition. The cost of
one step would contain:

• the cost of �nding the next redex (�x.t) u (proportional to the depth of the redex),

• the cost of performing the substitution (proportional to the size of t) and managing required re-
namings,

• the cost of reconstructing the term a�er transforming the redex (possibly proportional to the depth
of the redex).

This cost would then be repeated for each step. This is very ine�cient.

Call-by-value, big-step semantics. We de�ne an evaluation relation t ⇓ v de�ning the value v
resulting from the evaluation of t . The relation is re�exive on terms that are already values.

c ⇓ c �x.t ⇓ �x.t
t ⇓ �x.s u ⇓ v s{x ← v} ⇓ w

t u ⇓ w

1

https://public.lmf.cnrs.fr/~blsk/LambdaCalculus/


As before, we never reduce under �-abstractions, and we do not expect to reach a free variable. Eval-
uation of an application requires evaluating the function and the argument, and then evaluating the
function body, with access to the value of the argument.

Following these rules, we de�ne an interpretation function eval.

eval(c) = c
eval(�x.t) = �x.t
eval(t u) = eval(s{x ← v}) if eval(t) = �x.s and eval(u) = v

The costs of �nding the next redex and of rebuilding the term are amortized. All the costs related to
substitution are still there.

Call-by-value, big-step semantics with environments. Rather than actually performing substitu-
tions, we consider a term (with free variables) together with an environment (which gives values to the
free variables of the term). The evaluation relation now takes the form

e ⊢ t ⇓ v

and means “the term t taken in the environment e evaluates to v”.
To correctly implement the scoping rules of variables in the �-calculus, every value possibly con-

taining free variables should be given together with the environment in which it has been de�ned. Thus,
the “value” associated to a �-abstraction �x.t is a closure, that is a pair ⟨�x.t, e⟩ of the �-abstraction and
an environment e providing values for its free variables.

The values and environments are now de�ned by:

v ∶∶= c
| ⟨�x.t, e⟩

e ∶∶= {x1 ↦ v1, … , xk ↦ vk}

Evaluation rules are as follows. The value of a variable is looked up in the environment. The value of
a �-abstraction is a closure built with the current environment. When evaluating the body of a function,
we use the environment provided by the closure, to ensure that all free variables are associated to the
proper (lexically scoped) values. We write {e, x ↦ v} the extension of the environment e with the
mapping of the variable x to the value v.

e ⊢ c ⇓ c
e(x) = v
e ⊢ x ⇓ v e ⊢ �x.t ⇓ ⟨�x.t, e⟩

e ⊢ t ⇓ ⟨�x.s, e′⟩ e ⊢ u ⇓ v {e′, x ↦ v} ⊢ s ⇓ w
e ⊢ t u ⇓ w

Following these rules, we de�ne a new interpretation function, that takes as inputs a �-term and an
environment.

eval(c, e) = c
eval(x, e) = e(x)

eval(�x.t, e) = ⟨�x.t, e⟩
eval(t u, e) = eval(s, {e′, x ↦ v}) if eval(t, e) = ⟨�x.s, e′⟩ and eval(u, e) = v

There is no substitution anymore. However we still have to deal with names.

Call-by-value, big-step semantics with environments, without names. We can represent �-
terms without using variables names, by replacing each variable occurrence by a number called de Bruijn

2



index, de�ned as the number of � that are between this variable occurrence and its binder.

�x.�y.(y x ((�y.xy) y)) �.�.0 1 ((�.20) 0)

�x
�y
@

@
y x

@
�y
@

x y

y

�
�
@

@
0 1

@
�
@

2 0

0

With this nameless notations for terms, a �-redex now has the shape

(�.t) u

and its reduction consists in replacing by u the variable occurrences of t that are bound by this �. They
are precisely: the occurrences of 0 that are not nested under any other �, the occurrences of 1 that are
nested under exactly 1 other �, the occurrences of 2 that are nested under exactly 2 other �’s... However,
in our implementation we do not perform any substitution: the argument u is just inserted at index 0 in
the environment. More generally, an environment is now just a list of values, and each value is accessed
through its index in the list.

Terms, values and environemnts. We write n for the variable with index n. An environment is now
written as a sequence of values (there are no names anymore, we refer to values in the environment only
by their position).

t ∶∶= c constant
| n variable (de Bruijn index)
| �.t abstraction
| t u application

v ∶∶= c
| ⟨�.t, e⟩

e ∶∶= v0 ⋅ v1 ⋅ … ⋅ vk
Evaluation rules. We write e[n] for taking the value of index n in the list e. We write v ⋅ e for the
environment obtained from by inserting v at index 0 (and incrementing the indices of all the other
values in e).

e ⊢ c ⇓ c
e[n] = v
e ⊢ n ⇓ v e ⊢ �.t ⇓ ⟨�.t, e⟩

e ⊢ t ⇓ ⟨�.s, e′⟩ e ⊢ u ⇓ v v ⋅ e′ ⊢ s ⇓ w
e ⊢ t u ⇓ w

These rules give us a �nal version of our evaluation function, working on �-terms in nameless represen-
tation.

eval(c, e) = c
eval(n, e) = e[n]

eval(�.t, e) = ⟨�.t, e⟩
eval(t u, e) = eval(s, v ⋅ e′) if eval(t) = ⟨�.s, e′⟩ and eval(u, e) = v

E�icient interpreter. The �nal evaluation function can easily be translated into code, giving us
an e�cient interpreter (an interpreter from which the obvious ine�ciencies have been removed). In
the following caml code we assume a datatype 'a env for environments containing elements of type
'a, with functions env_lookup: int -> 'a env -> 'a for getting the element at a given index, and
env_add: 'a -> 'a env -> 'a env for inserting an element at index 0. Many concrete data structures
exist, which provide e�cient implementations of these operations.

3



type term =
| Cst of int
| Var of int
| Abs of term
| App of term * term

type value =
| VCst of int
| VClos of term * value env

let rec eval e env = match e with
| Cst n -> VCst n
| Var n -> env_lookup n env
| Abs t -> VClos(t, env)
| App(t, u) ->

let VClos(s, env ') = eval t env in
let v = eval u env in
eval s (env_add v env ')

2 Compilation to abstract machine code

Instead of interpreting a program, we can translate it into a sequence of instructions for some machine.
Two possibilities:

• we can target an actual microprocessor, and the instructions will be executed directly by the hard-
ware,

• or we can target an abstract machine, which looks like a machine but does not correspond to actual
hardware.

In general, the instructions of an abstract machine are chosen with two criteria: they are close to the
basic mechanisms of the source language, and they can be implemented e�ciently.

Warm-up: an abstract machine for evaluating arithmetic expressions. Arithmetic expression
can famously be evaluated using a very simple machine working with a stack (a sequential data-structure
in which we can add and remove elements “at the top”).

Arithmetic expressions:
a ∶∶= N

| a1 + a2
| a1 × a2

Instructions:

• CONST(N ): push integer N on top of the stack,

• ADD,MUL: pop two integers from the stack, combine, push the result back on the stack,

• c1; c2: execute c1, then c2.

An expression a is translated into a sequence of instructions (a) that evaluates a and pushes the ob-
tained value on the stack. Evaluating a binary operation consists in evaluating both parts, saving the
intermediate values on the stack, and then combining the two stored values.

(N ) = CONST(N )
(a1 + a2) = (a1); (a2); ADD
(a1 × a2) = (a1); (a2); MUL

The state of the machine executing such instructions is de�ned by:

4



• a code pointer, to the instructions that have to be executed,

• a stack with the stored intermediate results.

The execution of the machine is a sequence of steps, de�ned by the following table.

State before State a�er
code stack code stack
CONST(N ); c s c N ⋅ s
ADD; c N1 ⋅ N2 ⋅ s c (N1 + N2) ⋅ s

This machine can be implemented e�ciently, either by interpreting its instructions, or by expanding
them into native code for our actual processor.

An abstract machine for call-by-value �-calculus. The “SECD” machine for executing �-terms has
three elements:

• a code pointer c, to the instructions that have to be executed,

• an environment e, which gives values to the variables,

• a stack s, which stores intermediate results and other useful context information.

These components are the C, E and S from SECD. The original version contained a second stack (“dump”),
merged here into S. In addition to the basic arithmetic operation, it features the following instructions:

• ACCESS(n): push the n-th element of the environment on the stack,

• CLOSURE(c): make a closure with code c and the current environment, and push it on the stack,

• APPLY: pop an argument and a function closure, and perform the application,

• RETURN: returns to caller.

Compilation:
(n) = ACCESS(n)

(�.t) = CLOSURE((t); RETURN)
(t u) = (t); (u); APPLY

Execution steps. The APPLY instruction records on the stack the context information that should be
restored a�er the call. This information consists in the code pointer c to the instructions that follow the
code, and the current environment. Then the RETURN instruction retrieves and restores this informa-
tion. We write again ⟨c, e⟩ for a closure with code c and environment e (note that here, c is a sequence
of instructions and not a �-term). Notation (c, e) similarly denotes a pair of code an environment, used
to restore context a�er function return.

State before State a�er
code env stack code env stack
ACCESS(n); c e s c e e[n] ⋅ s
CLOSURE(c′); c e s c e ⟨c′, e⟩ ⋅ s
APPLY; c e v ⋅ ⟨c′, e′⟩ ⋅ s c′ v ⋅ e′ (c, e) ⋅ s
RETURN; c e v ⋅ (c′, e′) ⋅ s c′ e′ v ⋅ s

Compilation, extended for (nameless) local variables. Since it is used a lot, the de�nition of local
variables using let is given a pair of dedicated instructions. The scope of the local variable is de�ned by
a pair LET/ENDLET that adds the value to the environment, and removes it at the end.

(let t in u) = (t); LET; (u); ENDLET

5



• LET: add to the environment the value taken at the top of the stack,

• ENDLET: drop a value from the environment.

Execution steps.
State before State a�er

code env stack code env stack
LET; c e v ⋅ s c v ⋅ e s
ENDLET; c v ⋅ e s c e s

Proving partial correctness of themachine. Goal: if a term t evaluates to v in the �-calculus (mean-
ing: if t →∗ v), then the machine started in the state L (t) ∣ " ∣ " M terminates in a state L " ∣ " ∣ v′ M
where v′ represents the value v.

We prove this by induction on the big-step semantics e ⊢ t ⇓ v. For the induction to work, we need
to generalize our goal property in such a way that it will be applicable to the evaluation of subterms.
For this, we include in the statement an arbitrary sequence of code, an environment and a stack. The
property we prove is then:

If e ⊢ t ⇓ v then for any c and s we have L (t); c ∣  (e) ∣ s M →∗ L c ∣  (e) ∣  (v) ⋅ s M

This property uses a translation function  (.) for translating values and environments from the �-
calculus in machine format.

 (N ) = N
 (⟨�.t, e⟩) = ⟨(t); RETURN,  (e)⟩

 (v0 ⋅ v1 ⋅ … ⋅ vk) =  (v0) ⋅  (v1) ⋅ … ⋅  (vk)
Proof of the property, by induction over the derivation of e ⊢ t ⇓ v.

• Case e ⊢ N ⇓ N . Then (N ) = CONST(N ) and  (N ) = N and we have

L CONST(N ); c ∣  (e) ∣ s M → L c ∣  (e) ∣ N ⋅ s M

in one step of the machine.

• Case e ⊢ n ⇓ v, with e[n] = v. Then (n) = ACCESS(n) and  (e)[n] =  (v) and we have

L ACCESS(N ); c ∣  (e) ∣ s M → L c ∣  (e) ∣  (v) ⋅ s M

in one step of the machine.

• Case e ⊢ �.t ⇓ ⟨�.t, e⟩. Then(�.t) = CLOSURE((t); RETURN) and  (⟨�.t, e⟩) = ⟨(t); RETURN,  (e)⟩
and we have

L CLOSURE((t); RETURN); c ∣  (e) ∣ s M → L c ∣  (e) ∣ ⟨(t); RETURN,  (e)⟩ ⋅ s M

in one step of the machine.

• Case e ⊢ t u ⇓ w with e ⊢ t ⇓ ⟨�.r , e′⟩, e ⊢ u ⇓ v and v ⋅ e′ ⊢ r ⇓ w . Then (t u) =
(t); (u); APPLY and  (⟨�.r , e′⟩) = ⟨(r); RETURN,  (e′)⟩. We build the following sequence of
execution of the machine:

(t); (u); APPLY; c  (e) s
→∗ (u); APPLY; c  (e)  (⟨�.r , e′⟩) ⋅ s by IH on e ⊢ t ⇓ ⟨�.r , e′⟩
→∗ APPLY; c  (e)  (v) ⋅  (⟨�.r , e′⟩) ⋅ s by IH on e ⊢ u ⇓ v
→ (r); RETURN  (v) ⋅  (e′) (c,  (e)) ⋅ s
→∗ RETURN  (v) ⋅  (e′)  (w) ⋅ (c,  (e)) ⋅ s by IH on v ⋅ e′ ⊢ r ⇓ w
→ c  (e)  (w) ⋅ s

Remark: this correctness property is called partial, because it applies only to terms t such that call-by-
value evaluation e ⊢ t ⇓ v succeeds. We could state a more precise property ensuring that other possible
observable behaviours (non-termination, termination on error...) are also preserved, but the proof is
signi�cantly harder.

6



3 An abstract machine for call-by-name �-calculus.
Call-by-name and call-by-need evaluation strategies do not use the samemechanisms than call-by-value.
Machines for these strategies are thus also di�erent.

Call-by-name, small-step semantics. The relation t → t′ describes individual reduction steps. Call-
by-name evaluation: apply a function to its argument without evaluating the argument �rst, then eval-
uate the argument on demand.

(�x.t) u → t{x ← u}
t → t′

t u → t′ u
Di�erences with call-by-value reduction rules: the argument of a �-redex is not constrained anymore to
be a value. Right members of applications are not evaluated. As for call-by-value, we will actually work
with an environment rather than substitutions, and use the nameless representation based on de Bruijn
indices.

The KAM (Krivine Abstract Machine) uses the same three kinds of elements than the SECD machine:
a code pointer, an environment and a stack. Their contents is slightly di�erent however.

• The environment still contains the actual parameters provided to a function, but these parameters
are not evaluated anymore. Then the environment contains “terms to evaluate later” rather than
values. These elements, called thunks, are pairs made of a code pointer and an environment (a
thunk is similar to a functional closure, but its “code” part is not necessarily the code of a function).

• The stack contains parts of the term that are waiting to be considered, in particular the arguments
to which a function has not been applied yet. Once again, these elements are thunks (and this
contrasts with the stack of the SECD, which contained intermediate values).

The KAM has only three instructions. Compilation is as follows.

(n) = ACCESS(n)
(�.t) = GRAB; (t)
(t u) = PUSH((u)); (t)

• ACCESS(n): access the n-th thunk of the environment, and start evaluating it (in the SECD, the
accessed element was rather pushed on the stack).

• PUSH(c): make a thunk with the code c and the currrent environment, and push it on the stack.

• GRAB: takes a thunk on the top of the stack, and move it to the environment.

Execution of a term (�.�.t) a1 a2 a3 proceeds by:
1. pushing thunks for the arguments a3, a2 and a1 on the stack,

2. then applying the function �.�.t by transferring the thunks for a1 and a2 from the stack to the
environment,

3. �nally executing the code of t , evaluating the thunks for a1 or a2 when the corresponding de Bruijn
indices are accessed (and possibly transferring the thunk for a3 to the environment if a new � is
encountered).

Machine steps. We write ⟨c, e⟩ for the thunk made with code c and environment e.
State before State a�er

code env stack code env stack
ACCESS(n); c e s c′ e′ s if e[n] = ⟨c′, e′⟩
PUSH(c′); c e s c e ⟨c′, e⟩ ⋅ s
GRAB; c e ⟨c′, e′⟩ ⋅ s c ⟨c′, e′⟩ ⋅ e s

The execution of this machine can be related step by step to small-step reduction of a �-calculus extended
with an explicit representation of the environment (�-calculus with explicit substitutions).

7


	Interpretation
	Compilation to abstract machine code
	An abstract machine for call-by-name -calculus.

