Lambda-calculus and programming language semantics
Exam - duration 2:00 - course notes allowed

Exercise 1. Terms and reductions
1. Show that, under some conditions on x, y, t, u and v we have
(Ax.1) (Ay.u) v) =p (Ay.((Ax.t) w)) v

2. Define the size |t|, the width w(t) and the height h(t) of a A-term ¢ by the following equations:

x| = 1 w(x) = 1 h(ix) = 0
[Ax.t] = 1+t w(Ax.t) = w(t) h(Ax.t) = 1+h(¢)
[t1 ta] = 1+|ta]+ |82 w(ty t2) = w(t)+ w(tz) h(ti) = max(h(t1), h(t2))

Show that for any term ¢ we have [t| > w(t) + h(t).

3. Draw a graph showing all the reductions starting from the term
t = (Ax.x (xa) (I F)
Reminder: | = Ax.x and F = Axy.y.

4. Is there a A-term ¢ such that t = ptt ? If so, provide one such term.

Exercise 2. Lambda-calculus with let

We consider a A-calculus extended with a construct let x = s in ¢ linking a variable x to a term s in a term ¢. Full syntax
of the extended calculus A*:

t o= x variable
| application
| Axt abstraction
| letx=tint local variable

The definition of substitution is extended as well, to take into account the new terms.

B s ifx=y
yx sk = y otherwise
(twfx —st = (H{x s} (u{x —s})
Ay t){x «—s} = Ay.t{x « s} if y# xand y € fv(s)
(lety=uint){x <« s} = lety=u{x « s}int{x s} if y # xand y € fv(s)

We write A for the usual A-calculus without let. Any term ¢ € A* can be unfolded to a term (t) € A by expanding its

let-definitions as follows.
x) = x

(tu) = () (u)
(Ax.t) Ax.(t)
(let x = sin g) () {x < (s)}

We write t — ¢/ the reduction relation for terms in A*. The relation is defined as follows.

t—t t—t

(Axt)u—letx=uint let x =sint— t{x <« s} tu—t u let x=sint—letx=sint’

/
S§— S

A 7 .
letx=sint—letx=s"int
Here is an example of a reduction sequence using this system:

Ax.(Ay.y)x)a — letx=ain (Ay.y)x
— letx=ainlety=xiny
— letx=ainx
N

a

We write — 4 the usual S-reduction in A, and _)[3 its reflexive-transitive closure.

Questions.
1. Prove that for any terms s, t € A* and any variable x we have
(tfx — (D} = (fx s}
Indication. You may assume the following lemma:

V1, X2, o, t, b, tofxn <= tiH{xe «— B} = to{x — b }{x — ti{x — Ba}}

2. Let s, t € A and x be a variable. We claim that:
(a) if t —p t’ then t{x « s} —% t'{x < s}, and
(b) if s —p s’ then t{x «— s} —>*ﬁ tH{x «— s’}
Can you provide more precise information on the possible numbers of steps in these two reductions ¢{x «— s} —>ﬂ
...? Illustrate your answer with examples.

3. Prove that for any two terms #,’ € A*, if t — t/ then () —% ().
Indication. You may assume the claims of the previous question.

4. Consider a term t € A* and a reduction of its unfolding () — 4 u. Show that in some cases we can find a ' €A”
such that t — ¢/ and (t’)) = u, but not always.

Exercise 3. CPS transformation and type preservation

Consider the usual definitions for terms (t) and simple types (T) of the A-calculus, with f-reduction, where o is some
base type.

t x | Ax.t | tt

T ::= o| T—>T

(Ax.tl) Iy _)ﬁ tl{x = l’z}
Typing judgements ' — ¢ : T are derived using the following inference rules.
[(x)=T x:Ti+t: T 't : L —» T4 Tt : T
F'x:T T'Axt: T — Ty 'ttty : Ty

Questions.
1. Which of the following terms are well-typed? Provide a type derivation or explain the problem.
(@) (Axy.x)
(b) (Axyz.(x 2) (y 2))
(©) (Afx.(x f) x)
@ (f.f (Ax.x))

2. For any term t, define its CPS transform [[t] by the following equations:

[x] = (Akkx)
[Ax.t] = (Ak.x (Ax.[2]))
[[l’l tgﬂ = (/IK.[[tlﬂ (Avl.[[tzﬂ (/11)2.01 (%) K)))

We want to apply the transformation [.] to the term d from the previous question.

(a) Compute [d].

(b) Reduce every f-redex in [d] and give its normal form.

3. We also define a translation on types:

[T] = (T]—> o0 —o0
[o] = o
[l - T2] = [T]—[T3]

and extend this translation to environments in the following way:
[x1 2 Ty xn 2 Ty =1 [Th), s %0 2 [Tl
Prove that if the judgment I’ - ¢ : T is valid, then the judgment [I'] - [¢] : [T] is also valid.

