
Lambda-calculus and programming language semantics
Exam - duration 2:00 - course notes allowed

Exercise 1. Terms and reductions

1. Show that, under some conditions on x , y , t , u and v we have

(�x.t) ((�y.u) v) =� (�y.((�x.t) u)) v

2. De�ne the size |t |, the width w(t) and the height ℎ(t) of a �-term t by the following equations:

|x | = 1 w(x) = 1 ℎ(x) = 0
|�x.t | = 1 + |t | w(�x.t) = w(t) ℎ(�x.t) = 1 + ℎ(t)
|t1 t2| = 1 + |t1| + |t2| w(t1 t2) = w(t1) + w(t2) ℎ(t1 t2) = max(ℎ(t1), ℎ(t2))

Show that for any term t we have |t | > w(t) + ℎ(t).

3. Draw a graph showing all the reductions starting from the term

t ≡ (�x.x (x a)) (I F)

Reminder: I ≡ �x.x and F ≡ �xy.y.

4. Is there a �-term t such that t =� t t ? If so, provide one such term.

Exercise 2. Lambda-calculus with let

We consider a �-calculus extended with a construct let x = s in t linking a variable x to a term s in a term t . Full syntax
of the extended calculus Λ+:

t ∶∶= x variable
| tt application
| �x.t abstraction
| let x = t in t local variable

The de�nition of substitution is extended as well, to take into account the new terms.

y{x ← s} =
{

s if x = y
y otherwise

(t u){x ← s} = (t{x ← s}) (u{x ← s})
(�y.t){x ← s} = �y.t{x ← s} if y ≠ x and y ∉ fv(s)

(let y = u in t){x ← s} = let y = u{x ← s} in t{x ← s} if y ≠ x and y ∉ fv(s)

We write Λ for the usual �-calculus without let. Any term t ∈ Λ+ can be unfolded to a term LtM ∈ Λ by expanding its
let-de�nitions as follows.

LxM = x
Lt uM = LtM LuM

L�x.tM = �x.LtM
Llet x = s in tM = LtM{x ← LsM}

We write t → t′ the reduction relation for terms in Λ+. The relation is de�ned as follows.

(�x.t) u → let x = u in t let x = s in t → t{x ← s}
t → t′

t u → t′ u
t → t′

let x = s in t → let x = s in t′

s → s′
let x = s in t → let x = s′ in t

Here is an example of a reduction sequence using this system:

(�x.(�y.y)x) a → let x = a in (�y.y)x
→ let x = a in let y = x in y
→ let x = a in x
→ a

We write →� the usual �-reduction in Λ, and →∗
� its re�exive-transitive closure.

1

Questions.

1. Prove that for any terms s, t ∈ Λ+ and any variable x we have

LtM{x ← LsM} = Lt{x ← s}M
Indication. You may assume the following lemma:

∀x1, x2, t0, t1, t2, t0{x1 ← t1}{x2 ← t2} = t0{x2 ← t2}{x1 ← t1{x2 ← t2}}

2. Let s, t ∈ Λ and x be a variable. We claim that:

(a) if t →� t′ then t{x ← s}→∗
� t′{x ← s}, and

(b) if s →� s′ then t{x ← s}→∗
� t{x ← s′}.

Can you provide more precise information on the possible numbers of steps in these two reductions t{x ← s}→∗
�

…? Illustrate your answer with examples.

3. Prove that for any two terms t, t′ ∈ Λ+, if t → t′ then LtM →∗
� Lt′M.

Indication. You may assume the claims of the previous question.

4. Consider a term t ∈ Λ+ and a reduction of its unfolding LtM →� u. Show that in some cases we can �nd a t′ ∈ Λ+
such that t → t′ and Lt′M = u, but not always.

Exercise 3. CPS transformation and type preservation

Consider the usual de�nitions for terms (t) and simple types (T) of the �-calculus, with �-reduction, where o is some
base type.

t ∶∶= x | �x.t | t t
T ∶∶= o | T → T
(�x.t1) t2 ⟶� t1{x ∶= t2}

Typing judgements Γ ⊢ t ∶ T are derived using the following inference rules.

Γ(x) = T
Γ ⊢ x ∶ T

Γ, x ∶ T1 ⊢ t ∶ T2
Γ ⊢ �x.t ∶ T1 → T2

Γ ⊢ t1 ∶ T2 → T1 Γ ⊢ t2 ∶ T2
Γ ⊢ t1 t2 ∶ T1

Questions.

1. Which of the following terms are well-typed? Provide a type derivation or explain the problem.

(a) (�xy.x)
(b) (�xyz.(x z) (y z))
(c) (�f x.(x f) x)
(d) (�f .f (�x.x))

2. For any term t , de�ne its CPS transform JtK by the following equations:

JxK = (��.� x)
J�x.tK = (��.� (�x.JtK))
Jt1 t2K = (��.Jt1K (�v1.Jt2K (�v2.v1 v2 �)))

We want to apply the transformation J.K to the term d from the previous question.

(a) Compute JdK.
(b) Reduce every �-redex in JdK and give its normal form.

3. We also de�ne a translation on types:

JT K = ([T]→ o)→ o
[o] = o

[T1 → T2] = [T1]→ JT2K
and extend this translation to environments in the following way:

Jx1 ∶ T1,… , xn ∶ TnK = x1 ∶ [T1],… , xn ∶ [Tn]
Prove that if the judgment Γ ⊢ t ∶ T is valid, then the judgment JΓK ⊢ JtK ∶ JT K is also valid.

2

