Lambda-calculus and programming language semantics

Exam - duration 2:00 - course notes allowed

Exercise 1. Terms and reductions

1. Show that, under some conditions on x , y , t , u and v we have

$$
(\lambda x.t) ((\lambda y.u) v) =_{\beta} (\lambda y. ((\lambda x.t) u)) v
$$

2. Define the size |t|, the width $w(t)$ and the height $h(t)$ of a λ -term t by the following equations:

 $|x| = 1$ $w(x) = 1$ $h(x) = 0$ $|\lambda x.t| = 1 + |t|$ $w(\lambda x.t) = w(t)$ $h(\lambda x.t) = 1 + h(t)$ $|t_1 \, t_2|$ = 1 + $|t_1|$ + $|t_2|$ w($t_1 \, t_2$) = w(t_1) + w(t_2) = max($h(t_1), h(t_2)$)

Show that for any term t we have $|t| \geq w(t) + h(t)$.

3. Draw a graph showing all the reductions starting from the term

$$
t = (\lambda x.x (x a)) (I F)
$$

Reminder: $I = \lambda x.x$ and $F = \lambda x y.y$.

4. Is there a λ -term t such that $t =_\beta t$ t ? If so, provide one such term.

Exercise 2. Lambda-calculus with let

We consider a λ -calculus extended with a construct let $x = s$ in t linking a variable x to a term s in a term t. Full syntax of the extended calculus Λ^{\dagger} :

The definition of substitution is extended as well, to take into account the new terms.

$$
y\{x \leftarrow s\} = \begin{cases} s & \text{if } x = y \\ y & \text{otherwise} \end{cases}
$$

\n
$$
(t\ u)\{x \leftarrow s\} = (t\{x \leftarrow s\}) (u\{x \leftarrow s\})
$$

\n
$$
(\lambda y.t)\{x \leftarrow s\} = \lambda y.t\{x \leftarrow s\} \text{ if } y \neq x \text{ and } y \notin fv(s)
$$

\n
$$
(\text{let } y = u \text{ in } t)\{x \leftarrow s\} = \text{let } y = u\{x \leftarrow s\} \text{ in } t\{x \leftarrow s\} \text{ if } y \neq x \text{ and } y \notin fv(s)
$$

We write Λ for the usual λ -calculus without let. Any term $t \in \Lambda^+$ can be *unfolded* to a term $|t| \in \Lambda$ by expanding its let definitions as follows let-definitions as follows.

$$
\begin{array}{rcl}\n\langle |x| \rangle & = & x \\
\langle |t|u| \rangle & = & \langle |t| \rangle \langle |u| \rangle \\
\langle | \lambda x. t \rangle & = & \lambda x. \langle |t| \rangle \\
\langle | \text{let } x = s \text{ in } t \rangle & = & \langle |t| \rangle \{ x \leftarrow \langle |s| \} \} \n\end{array}
$$

We write $t \to t'$ the reduction relation for terms in Λ^+ . The relation is defined as follows.

$$
\frac{t \to t'}{(\lambda x.t) u \to \text{let } x = u \text{ in } t} \qquad \frac{t \to t'}{\text{let } x = s \text{ in } t \to t \{x \leftarrow s\}} \qquad \frac{t \to t'}{t u \to t' u} \qquad \frac{t \to t'}{\text{let } x = s \text{ in } t \to \text{let } x = s \text{ in } t'}
$$
\n
$$
\frac{s \to s'}{\text{let } x = s \text{ in } t \to \text{let } x = s' \text{ in } t}
$$

Here is an example of a reduction sequence using this system:

$$
(\lambda x.(\lambda y.y)x) a \rightarrow \text{let } x = a \text{ in } (\lambda y.y)x
$$

\n
$$
\rightarrow \text{let } x = a \text{ in } \text{let } y = x \text{ in } y
$$

\n
$$
\rightarrow \text{let } x = a \text{ in } x
$$

\n
$$
\rightarrow a
$$

We write \rightarrow_{β} the usual β -reduction in Λ , and \rightarrow_{β}^* its reflexive-transitive closure.

Questions.

1. Prove that for any terms $s, t \in \Lambda^+$ and any variable x we have

$$
\langle \vert t \vert \{x \leftarrow \langle s \vert\} \rangle = \langle \vert t \{x \leftarrow s\} \rangle \rangle
$$

Indication. You may assume the following lemma:

$$
\forall x_1, x_2, t_0, t_1, t_2, \quad t_0 \{x_1 \leftarrow t_1\} \{x_2 \leftarrow t_2\} = t_0 \{x_2 \leftarrow t_2\} \{x_1 \leftarrow t_1 \{x_2 \leftarrow t_2\}\}
$$

- 2. Let $s, t \in \Lambda$ and x be a variable. We claim that:
	- (a) if $t \rightarrow_\beta t'$ then $t\{x \leftarrow s\} \rightarrow_\beta^* t'\{x \leftarrow s\}$, and
	- (b) if $s \rightarrow_\beta s'$ then $t\{x \leftarrow s\} \rightarrow_\beta^* t\{x \leftarrow s'\}$.

Can you provide more precise information on the possible numbers of steps in these two reductions $t\{x \leftarrow s\} \to^*_k$ …? *Illustrate your answer with examples.*

- 3. Prove that for any two terms $t, t' \in \Lambda^+$, if $t \to t'$ then $(|t| \to_{\beta}^* (|t'|)).$ *Indication. You may assume the claims of the previous question.*
- 4. Consider a term $t \in \Lambda^+$ and a reduction of its unfolding $|t| \to \beta$ u. Show that in some cases we can find a $t' \in \Lambda^+$ such that $t \to t'$ and $\left(t'\right) = u$, but not always.

Exercise 3. CPS transformation and type preservation

Consider the usual definitions for terms (*t*) and simple types (*T*) of the λ -calculus, with β -reduction, where *o* is some base type.

$$
t \quad ::= \quad x \mid \lambda x.t \mid t \, t
$$

$$
T \quad ::= \quad o \mid T \rightarrow T
$$

$$
(\lambda x.t_1) t_2 \longrightarrow_{\beta} t_1 \{x := t_2\}
$$

Typing judgements $\Gamma \vdash t : T$ are derived using the following inference rules.

$$
\frac{\Gamma(x) = T}{\Gamma \vdash x : T}
$$
\n
$$
\frac{\Gamma, x : T_1 \vdash t : T_2}{\Gamma \vdash \lambda x . t : T_1 \rightarrow T_2}
$$
\n
$$
\frac{\Gamma \vdash t_1 : T_2 \rightarrow T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 t_2 : T_1}
$$

Questions.

- 1. Which of the following terms are well-typed? Provide a type derivation or explain the problem.
	- (a) $(\lambda x y.x)$
	- (b) $(\lambda x \gamma z.(x z) (y z))$
	- (c) $(\lambda f x.(x f) x)$
	- (d) $(\lambda f.f(\lambda x.x))$
- 2. For any term t , define its *CPS transform* $\llbracket t \rrbracket$ by the following equations:

$$
\begin{array}{rcl}\n\llbracket x \rrbracket & = & (\lambda \kappa \kappa \kappa) \\
\llbracket \lambda x. t \rrbracket & = & (\lambda \kappa \kappa \left(\lambda x. \llbracket t \rrbracket)) \\
\llbracket t_1 \ t_2 \rrbracket & = & (\lambda \kappa \llbracket t_1 \rrbracket \left(\lambda v_1 \llbracket t_2 \rrbracket \left(\lambda v_2 \ldots v_1 \ v_2 \ \kappa \right)) \right)\n\end{array}
$$

We want to apply the transformation $\left\| . \right\|$ to the term d from the previous question.

- (a) Compute $\llbracket d \rrbracket$.
- (b) Reduce every β -redex in $\llbracket d \rrbracket$ and give its normal form.
- 3. We also define a translation on types:

$$
\begin{aligned}\n[T] &= \left([T] \to o \right) \to c \\
[o] &= o \\
[T_1 \to T_2] &= \left[T_1 \right] \to \left[T_2 \right]\n\end{aligned}
$$

and extend this translation to environments in the following way:

$$
[[x_1 : T_1, ..., x_n : T_n]] = x_1 : [T_1], ..., x_n : [T_n]
$$

Prove that if the judgment $\Gamma \vdash t : T$ is valid, then the judgment $\llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket T \rrbracket$ is also valid.