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Abstract
We give an axiomatic presentation of sharing-via-labelling for
weak λ-calculi, that makes it possible to formally compare many
different approaches to fully lazy sharing, and obtain two impor-
tant results. We prove that the known implementations of full lazi-
ness are all equivalent in terms of the number of β-reductions
performed, although they behave differently regarding the duplica-
tion of terms. We establish a link between the optimality theories
of weak λ-calculi and first-order rewriting systems by expressing
fully lazy λ-lifting in our framework, thus emphasizing the first-
order essence of weak reduction.

Categories and Subject Descriptors I.1.3 [Languages and Sys-
tems]: Evaluation strategies

General Terms Theory, Languages

Keywords Sharing, Full laziness, Lambda-lifting, Rewriting,
Lambda-calculus, Weak reduction, Optimality, Labelling.

1. Introduction
In the implementation of functional programming languages, a
fundamental problem is the efficient evaluation of β-reduction.
This problem has been studied for a long time. Its difficulty comes
from the fact that one has to minimize the number of β-steps as
well as control the actual (amortized) cost of single β-reduction
steps. The minimization of the number of β-steps requires, in turn,
to handle two different issues: avoiding non-needed computations,
and minimizing duplications of unfinished work.

In λ-calculus, some reduction strategies [BKKS87] can com-
pletely avoid non-needed computations. However, it is also known
that no reduction strategy can completely avoid duplications [Lam90].
Hence, in any case, one has to cope with duplications that still oc-
cur, and find some appropriate ways to deal with them.

This is exactly the point of sharing: building implementations in
which the duplicated occurrences of a given original subterm keep
a unique shared representation. This allows one to evaluate all the
copies simultaneously, as if they were only one. The idea is to make
sure that some parts of a program which are logically duplicated (in
the term representation of the program) remain physically single
pieces (in the memory of the evaluator).
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Sharing cannot be achieved using only λ-terms: it requires the
use of other technical tools, for instance graphs, closures, or pro-
gram transformations. The various resulting formalisms may be
hardly comparable.

This paper focuses on one particularly rich flavor of sharing
called fully lazy sharing (described in section 1.2) and aims at for-
mally relating its various implementations. This is done by defining
a framework called sharing-via-labelling systems in which they can
all be expressed and compared.

This unified approach provides compiler writers with increased
knowledge on the wide panorama of full laziness. In particular,
it replaces a series of sometimes informal justifications of equiv-
alence by a central theorem ensuring that all the considered ap-
proaches are equivalent with respect to the number of shared β-
steps. As a consequence, one can safely restrict any subsequent
comparison of two fully lazy models to other parameters of interest
such as their space consumption or the actual cost of maintaining
sharing. Having a unified framework will also simplify the task of
comparing full laziness to the other efficient implementation tech-
niques, such as other degrees of laziness (up to optimality), or par-
tial evaluation.

The rest of the introduction is organized as follows: Section 1.1
presents the various technical tools commonly used to specify shar-
ing, Section 1.2 describes how these tools have been used and com-
bined over the past 40 years to propose different definitions of fully
lazy sharing, and Section 1.3 details our approach and the contri-
butions of the paper.

1.1 Many tools for sharing
Graphs. The most intuitive way of expressing sharing might be
by using graphs. In the pictures, the binary node @ represents
application, and redexes1 are marked with bold lines. For instance
in the center of the following picture, an abstraction λx.t is applied
to an argument a. The function body t contains two occurrences of
the variable x: the argument a is thus logically duplicated (on the
left).
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The simplest notion of sharing, which may be referred to as
lazy sharing, or just laziness, prevents the previous duplication by
keeping a physically unique, with two pointers to its location (right
hand side part of the previous picture).

Here the term laziness is to be taken in literal sense: the duplica-
tions are postponed as long as it is possible, but some of them will

1 a reducible expression, or redex, designs a place where an evaluation step
can take place



eventually happen. For instance, a shared function has to be copied
prior to any instantiation, as shown in the picture below.
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Extraction of free parameters. The previous pictures feature
graphs built with λ-calculus constructs, and in particular with
binders. This requires either to define variable renaming (α-
conversion) or to add some special structure to represent binding.
In any case the resulting graph formalism is quite complex. Graph
reduction can be made easier by turning λ-terms (that are higher-
order terms) to applicative expressions (that are first-order terms).
This is the point when compiling the λ-calculus into combina-
tors [Tur79] or supercombinators [Hug82], techniques that finally
led to the λ-lifting program transformation [Joh85, Jon87].

This transformation extracts all the free variables from a func-
tion and replaces what remains of the function by a symbol called
supercombinator. New reduction rules are added to deal with the
new symbols.

Closures and memory heaps. While graphs are a simple and old
way to describe lazy sharing, the reference system for the semantics
of lazy evaluation is J. Launchbury’s natural semantics [Lau93].
It introduces let ... in ... constructs to name the arguments of the
applications, and then puts these arguments in a heap. Sharing then
appears as memoization: when one needs to access the content
of a variable, the corresponding expression found in the heap is
evaluated, and the heap is updated with the obtained result.

In contrast to the previous big-step approach, a small-step de-
scription of lazy evaluation based on terms is the call-by-need λ-
calculus of Z. Ariola et al. [AFM+95]. Here again, sharing is ex-
pressed thanks to additional let ... in ... constructs used as closures.
Similar effects can also be achieved by expressing sharing using
explicit substitutions [Yos94]. The big-step and small-step styles
can be related by well-known transformations [DMMZ10].

Labels and weak reduction. Finally, laziness is seen in [Yos94,
Mar91] as the optimal way of sharing in weak λ-calculi: variants of
the λ-calculus where reduction under λ-abstractions is restricted.
First, J.-J. Lévy [Lé80] described optimal sharing for the plain
λ-calculus (unrestricted, untyped, usual λ-calculus) by means of
labelled λ-terms. Then L. Maranget [Mar91] adapted these ideas
for a weak λ-calculus and for first-order rewriting and got an
additional result that is not valid for the plain λ-calculus: labelled
terms represent graphs implementing optimal sharing.

In [Mar91] the link between labelled terms and graphs is made
by interpreting the label of a term as its location in memory, or
graphically by its coordinate:

@α

λxβ

@γ

xι

t

t
δ

δ
@

λx

@
x

t

We call this principle sharing-via-labelling. The idea is also ex-
plored in [DLLL05]. In this setting the equality of labels corre-
sponds to the physical equality of two terms, which should in turn
imply their syntactic equality: two terms stored/drawn at the same
place ought to be equal. The reduction of a graph-redex is simu-
lated by the reduction of all the labelled term-redexes with a given
label. One then needs to ensure that the sharing property (terms
with equal labels are syntactically equal) is preserved by reduction.

1.2 Full laziness: State of the art
The main idea. Full laziness is based upon the following remark:
the constant parts of a function body are not affected by the instan-
tiation of the function, hence they need not be duplicated.

This can be formalized by means of the notion of free expres-
sion. We recall the definition given in [Jon87]. Say a subterm s of t
is free in λx.t if all the free variables of s are free in λx.t. A max-
imal free expression of λx.t is a free expression of λx.t which is
not contained into any other free expression of λx.t.

Fully lazy sharings. The various definitions of fully lazy sharing
come from a combination of the previous idea with one or more of
the technical tools described in section 1.1.

The first description of fully lazy sharing is in the graph evalu-
ation technique presented by C.P. Wadsworth [Wad71]. This graph
reduction performs only a partial copy of a duplicated function
body, by avoiding the copy of its maximal free expressions (see
Example 1a). O. Shivers and M. Wand [SW05] enrich the graph
structure of [Wad71] to allow a simple and efficient implementa-
tion. For this they also use a different characterization of what has
to be copied, which we detail in Section 3.1.

Two other approaches combine graphs with other tools. First
S. Peyton-Jones [Jon87] reaches a simple graph formalism thanks
to a fully-lazy version of λ-lifting. Following [Hug82], fully-lazy
λ-lifting replaces the extraction of the free variables of a function
by the extraction of its maximal free expressions. Second, T. Blanc,
J.-J. Lévy and L. Maranget [BLM07] derive a graph implementa-
tion of fully lazy sharing through the sharing-via-labelling princi-
ple, using labels that characterize optimal sharing for a weak λ-
calculus studied in [ÇH98]. This approach can copy fewer graph
nodes of the duplicated abstractions (see Example 1b).

Finally, Z. Ariola and M. Felleisen [AF97] and P. Sestoft [Ses97]
use the extraction of maximal free expressions to build fully lazy
versions of (respectively) the call-by-need λ-calculus [AFM+95]
and Launchbury’s natural semantics for laziness [Lau93]. Both so-
lutions are based on closures represented by let ... in ... constructs.
The former solution [AF97] uses a more restrictive definition of
free expressions and hence may in some cases copy more nodes
than the others (see Example 1c).

Example 1.
Bold lines identify the parts of the function that are duplicated by
the different models. See Section 3.1 for a formal statement.
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(a) [Wad71] (b) [BLM07] (c) [AF97]

Summary. The following table sums up how each of the previous
works gives its own view on fully lazy sharing, with different inter-
pretations of the same main idea and using various combinations of
technical tools that are sometimes hardly comparable. We use the
symbol = to mean “as many copied nodes as [Wad71]”.

Tools
Dupl. Graphs Extraction Closures Labels

[Wad71] = X
[Jon87] = X X
[AF97] More X X
[Ses97] = X X
[SW05] = X

[BLM07] Fewer X X



This paper proposes a formal setting in which all the approaches
mentioned above can be expressed. This allows us to formally
compare them and leads us to the two following conclusions:

• The previous approaches correspond to at least three different
graph implementations. This means that, strictly speaking, they
do not all induce the same amount of sharing. Hence, despite
the fact that all these approaches intend to implement the same
idea their equivalence is not obvious.

• However, all these approaches have the same reduction space.
This means that the different implementations of fully lazy
sharing perform the same number of β-reductions. In other
words, any further comparison of these approaches need not
anymore take this parameter into account.

1.3 Content of the paper
An axiomatic framework for sharing-via-labelling. We build in
Section 2 an axiomatic framework which generalizes the work
of T. Blanc, J.-J. Lévy and L. Maranget [BLM07] and allows us
to express all the previous approaches. We use labelled terms to
describe the graphs realizing optimal sharing for a given notion of
weak reduction. Various weak reduction notions are defined thanks
to an axiomatic description of the parts of the program where
reduction is forbidden. In any case the restrictions concern only
evaluation in the body of a non-instantiated function, called partial
evaluation. This implies that the call-by-value and call-by-name
strategies are always valid. However, the different weak calculi may
or may not be confluent (see [ÇH98] and Example 3).

This approach of sharing-via-labelling allows us in Section 3
to relate all the definitions of fully lazy sharing that do not rely
on supercombinators and λ-lifting. In other words this axiomatic
framework, which is designed in higher-order rewriting, cov-
ers the definitions of full laziness which directly operate in the
higher-order world [Wad71, AF97, Ses97, SW05, BLM07]. The
remaining approaches using a translation to first-order rewrit-
ing by λ-lifting [Hug82, Jon87] are studied separately in Sec-
tion 4. The translation to first-order by means of combinators of
D. Turner [Tur79] is out of the scope of the present paper, since
these combinators simulate explicit substitutions and then intro-
duce additional reduction steps.

Notably due to its axiomatic nature, our framework is not suit-
able for an immediate implementation. On the other hand, this ap-
proach teaches us something about full laziness in general and on
its various concrete implementations. The novelty of our frame-
work lies in the fact that it cannot be seen as a straightforward
generalization of any of the aforementioned embodiments of full
laziness taken in isolation: the axiomatization rather comes from
an analysis of the similarities and the differences of all the concrete
systems. This yields a new system whose specific properties may
be understood as the intersection of the particular properties of the
various concrete systems. In other words, our axiomatization tries
to grasp the essence of full laziness.

A formal coding of higher order into first order by λ-lifting. The
λ-lifting program transformation turns a λ-term into a first-order
term. The main feature of λ-lifting is the transformation of λ-
abstractions into function symbols, also called supercombinators,
over which first-order reduction rules are defined. As emphasized
in [LM09], this transformation unveils a tight relation between
weak λ-calculus and first-order rewriting.

Usual definitions of λ-liftings [Joh85] proceed by first defining
the transformation of λ-abstractions, and then iteratively applying
the process to a λ-term until it contains no more λ-abstractions.
Definitions differ in particular in the way in which a single λ-
abstraction is transformed and on the order in which the iteration
is applied. For instance, [Jon87] describes a bottom-up transforma-

tion, while [Ses97] iterates in an unspecified order. We ensure the
consistence of these two views by giving a definition of fully-lazy
λ-lifting in which the order of the iterative process is irrelevant.

Since λ-lifting is an iterative process that turns progressively
a λ-term into a first-order term, none of the intermediate steps is
in either of these worlds. Nevertheless, we would like to embody
the source, the target, and all the intermediate steps of the transfor-
mation into a single formalism. To this aim we use Combinatory
Reduction Systems (CRS), a higher-order rewriting framework in-
troduced by J.W. Klop and reviewed in [KvOvR93] that mixes ab-
stractions and symbols. The β-reduction as well as the target first-
order reduction have a straightforward encoding into CRS rules.
Moreover, fully lazy λ-lifting itself can then be seen as a rewrit-
ing process: it is expressed in Section 4 as a confluent and strongly
normalizing CRS reduction relation.

We provide a new proof of correctness of fully lazy λ-lifting
by showing that the transformation preserves reduction sequences:
each single reduction step in the source (resp. target) system is
simulated by exactly one single step in the target (resp. source)
system. The proof is small-step: the reduction sequences are proved
to be preserved in every intermediate step of the transformation.
Moreover, we prove that the notion of optimal sharing is also
preserved, which has two consequences:

• The direct [Wad71] and the λ-lifting based [Jon87] approaches
of full laziness are reduction-wise equivalent.

• Fully-lazy λ-lifting establishes a link between optimal sharing
in the weak λ-calculus [BLM07] and the better known optimal-
ity theory of first-order rewriting [Mar91, Ter03]. This empha-
sizes in a new way the “first-order” nature of weak reduction,
without any de Bruijn indices or explicit substitutions (contrary
to [Mar91]).

A final bonus remark is an incidental point which happens to
have some theoretical significance: while β-reduction and λ-lifting
considered separately can be seen as orthogonal systems2, their
combination cannot. As far as the author is aware, the system de-
rived in this paper is the first successful optimality-oriented la-
belling of a non-orthogonal system.

Outline. The paper comprises three main parts: Section 2 presents
the abstract notions of prefix, weak reduction, and sharing-via-
labelling and gives a proof of the sharing property for the axiomatic
framework. Section 3 restricts the axiomatics to enforce full lazi-
ness and proves a generic equivalence between several notions of
fully lazy sharing. Section 4 focuses on the particular fully lazy
system of [Wad71, SW05] whose properties allow a clean defini-
tion of fully lazy λ-lifting which establishes a strong link between
weak β-reduction and first-order rewriting.

For lack of space most proofs are only sketched here. The full
versions are in a companion technical report [Bal11].

2. Sharing and β-reduction
We define in this section an axiomatic framework in which the
higher-order approaches [Wad71, AF97, Ses97, SW05, BLM07] to
fully lazy sharing can be expressed. We propose an axiomatic no-
tion of weak β-reduction in Subsection 2.1, whose optimal sharing
is characterized by the sharing-via-labelling systems introduced in
Section 2.2. Section 2.3 then shows that reduction of labelled terms
in sharing-via-labelling systems represents reduction of graphs.

All this is expressed in Combinatory Reduction Systems (CRS).
For lack of space, we only recall the basic syntax and mechanisms.

2 in brief, a system is orthogonal when no two rules are applicable to
overlapping sets of positions of a term, see for instance [Ter03, Bru03]



We refer the reader to [KvOvR93] for a comprehensive presenta-
tion. The grammar of metaterms in a CRS is:

t ::= x | [x]t | f(t1, ..., tn) | Z(t1, ..., tn)

where x is a variable, [x] denotes the binding of a variable, f is
an n-ary function symbol taken in a signature Σ, and Z is an n-
ary meta-variable. A term is a metaterm without meta-variable,
and a reduction rule is a pair L → R of closed metaterms
satisfying the following conditions: the meta-variables in L appear
as Z(x1, ..., xn) with x1, ..., xn distinct bound variables, and all
the meta-variables of R also appear in L. A rule matches a term by
application of a valuation σ that maps n-ary meta-variables to n-
ary contexts avoiding variable capture. Reduction by a ruleL→ R
with valuation σ in a context c is c[Lσ]→ c[Rσ].

2.1 Weak β-reduction systems
This section gives an abstract definition of weak reduction in the λ-
calculus and states one of its crucial properties: disjoint redexes
remain disjoint along any reduction sequence (Lemma 1). This
lemma serves in particular in the definition of graph reduction in
Section 2.3.

Weak reduction forbids the reduction of so-called frozen re-
dexes, which are identified by their belonging to the prefix of some
λ-abstraction. Prefixes are parts of λ-abstractions defined by a pre-
fix function satisfying the axioms of a weak β-reduction system.

Weak β-reduction systems are CRS over the signature Σ com-
prising:

• a binary symbol @ for application,
• a unary symbol λ for λ-abstraction,
• a unary dummy symbol ε,
• for all n ∈ N, a countable set Fn of n-ary symbols.

From now on, by term we mean a CRS term over the signature
Σ (notation t, u, v, w, a). We use the usual notion of positions
of terms (notation q), contexts and free variables [KvOvR93]. We
write t{x:=u} the substitution by u of all the free occurrences of the
variable x in t.

Application and λ-abstraction symbols are used to embody λ-
terms in this signature, which is made in the usual way: the λ-term
(λx.x)y for instance is encoded in the CRS term @(λ([x]x), y).
We write λx.t as a shorthand for λ([x]t). Hence the encoding of
(λx.x)y is simply written @(λx.x, y), and the usual β-reduction
is represented by the CRS rule @(λx.Z(x), Z′)→ Z(Z′).

The symbols in the sets Fn are used in Section 4 to represent
supercombinators. Until then they play no role and may be ignored.

The dummy symbol ε has no meaning in itself. It is needed for
labelling (Subsection 2.2), and serves in particular as a container
for dynamically created labels. In the graphical interpretation of
labelled terms, the occurrences of ε will represent indirections (see
Subsection 3.1). As a consequence, occurrences of ε should not
interfere with β-reduction. This leads to the following countable
set of rules to simulate β-reduction by allowing any number of ε’s
between the application and the λ-abstraction:

β0: @(λx.Z(x), Z′) →β ε(Z(ε(Z′)))
β1: @(ε(λx.Z(x)), Z′) →β ε(Z(ε(Z′)))
β2: @(ε(ε(λx.Z(x))), Z′) →β ε(Z(ε(Z′)))
...

The two ε’s in the right hand sides are used for the correct la-
belling of collapsing reductions (see Subsection 2.2). The use of
the dummy symbol ε is inspired by the notion of expansion in term
rewriting systems [Ter03, Chap. 8].

Write ρ : t → t′ a reduction ρ of a term t to a term t′. The
usual notions of ancestors and descendants, which track subterms

along reduction in the λ-calculus are straightforwardly adapted, as
illustrated in Example 2. A residual of a redex r is a descendant of
r which is still a redex.

Example 2.
The term t = @(ε(λx.@(x, x)), y) reduces by rule β1 to t′ =
ε(@(ε(y), ε(y))). The two occurrences of y in t′ are the descen-
dants of the y in t, and the latter is the ancestor of the formers. The
ε in t has no descendant and the ε’s in t′ have no ancestor.

We call plain λ-calculus the usual reduction relation where
the previous rules can be applied in any context. Weak reduction
consists in restricting this reduction relation. Particularly, it affects
the reduction under λ-abstractions. Before introducing the formal
definition, let us present two different well-known examples:

Example 3.

1. The naive weak reduction simply forbids any reduction under
λ-abstractions.

2. A more refined version, studied in particular in [ÇH98], allows
no reduction between an occurrence of a bound variable and
its binder. Formally, if r is a redex of contractum r′, then the
reduction C[r] → C[r′] is allowed if and only if the context
C binds no variable that appears free in r. We call this version
CH-weak reduction.

It is known that CH-weak reduction yields a confluent weak calcu-
lus while naive weak reduction does not [ÇH98].

To specify the previous notions, we introduce a notion of prefix:
call a n-ary closed prefix of a term t a n-ary context p which does
not contain any free variable and such that there are terms t1, ..., tn
satisfying t = p[t1, ..., tn]. Example 4 gives two closed prefixes of
the same term. Call a prefix function a function that takes a term t
as input and returns a closed prefix of t.

Example 4.
Let t = λx.@(@(z1, z2), λy.@(@(y, z3), x)). The two contexts
λx.@([], λy.@([], x)) and λx.@([], λy.@(@(y, []), x)) are two
closed prefixes of t, called respectively spine and skeleton (see
Section 3.1). These two prefixes are marked with bold lines in the
two following pictures.
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A weak β-reduction system is defined below by a prefix func-
tion P satisfying some conditions. The first condition is a simple
restriction linked to bound variables. The second condition con-
trols the evolution of P(t) when free variables of t are substituted
by terms. In particular, P(t{x:=u}) is required to contain P(t), and
the extension fromP(t) toP(t{x:=u}) has to be uniform. This uni-
formity is enforced by the use of an auxiliairy function P�.

Call a weak β-reduction system a prefix function P such that:

• For any term λx.t such that P(λx.t) = p and λx.t =
p[t1, ..., tn], the variable x does not appear free in any of the
ti’s (which are called the parameters of λx.t). In other words,
P(λx.t) contains all the occurrences of x that are free in t.

• There is an auxiliary prefix function P� such that for any p in
the codomain of P and for any terms t1, ..., tn where no free



variable of a ti is bound in p, the equation P(p[t1, ..., tn]) =
p[P�(t1), ...,P�(tn)] holds.

A weak β-reduction system defines a notion of weak reduc-
tion as follows: β-reduction is forbidden in the prefix of any λ-
abstraction. Call a frozen position of a term t a position that is in
the prefix of some λ-abstraction of t. Call a frozen β-redex a redex
whose main @ symbol occurs at a frozen position.

Example 5.
The two weak reductions of Example 3 can be captured by our
axiomatic definition:

1. Naive weak reduction is given by Pn such that Pn(t) = p
where t = p[x1, ..., xn] and x1, ..., xn are all the free variable
occurrences of t. The auxiliary function isP�

n = Pn (the whole
substituted term is included into the prefix).

2. CH-weak reduction can be given by Pch such that Pch(t) = p
where t = p[t1, ..., tn] and t1, ..., tn are all the maximal free
expressions of t. The auxiliary function P�

ch is the constant
mapping returning the empty unary context [] (the prefix is
stable by substitution). We will see in Section 3.2 that Pch is
not the unique representation of CH-weak reduction.

An important feature of weak reduction is that it cannot nest the
residuals of disjoint redexes. This fact is formalized in Lemma 1,
and will be useful in Section 2.3 to ground the notion of parallel
reduction.

Lemma 1 (Disjoint residuals). Let ρ : t→ t′ be a reduction and
r1, ..., rn (non frozen) redexes of t occurring at disjoint positions.
Then the descendants of r1, ..., rn also occur at disjoint positions.

Example 6 shows why Lemma 1 is a feature of weak reduction
which is not valid in the plain λ-calculus.

Example 6.
Suppose r1 and r2 are two redexes. In the left term r1 is frozen for
any weak β-reduction system.
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To prepare the implementation of optimal sharing for weak β-
reduction systems in next section (2.2), we give a characterization
of redex creation in these systems. Suppose ρ : t →β t

′ in a weak
β-reduction system. A redex of t′ is created by ρ if it is not the
descendant of a (non frozen) redex of t. The reduction can create
redexes in t′ at exactly three places:

1. At the root of the contractum, the body of the main λ-abstraction
is connected to the context. This can create a new contact be-
tween an application and a λ-abstraction.

2. At the places where a substitution occurs, the argument is con-
nected to the body of the main λ-abstraction, or to the context
if the body is degenerated.

3. In the prefix of the main λ-abstraction, a previously frozen
redex can be “unfrozen” by ρ, as r1 in Example 6. In other
words, a reduction forbidden by the weak restriction in t can be
authorized in t′.

2.2 Sharing-via-labelling systems
We define in this section a labelling for weak β-reduction systems
which characterizes optimal sharing and yields a graph implemen-
tation. As in [Lé80], the labels record the past history of a term.
This is done in a distributed way since each label remembers only
what is relevant to its position. The important point for optimality
is that the labels of a redex r are characterized by the past reduc-
tions that contributed to the creation of r, which is ensured by the
concluding lemmas 2 and 3. These two lemmas also play a key role
in the proof of the preservation of the graph structure (so-called
sharing property) in Section 2.3.

To embody this contribution relation into the labels, we build
compound labels of the form [Ω, α] where a pre-existing label α is
modified by the name Ω of a contributing redex. The labelled β-
reduction then modifies the labels of the positions where the reduc-
tion can contribute to something, following the characterization of
redex creation given at the end of the previous subsection. Names
and contribution are required to satisfy three axioms which ensure
that the name of a redex correctly reflects its contributors.

The labelled terms are formalized as usual CRS terms over a
labelled signature. Since the labels should not interfere with the
normal reduction behaviour, the labelled β-reduction is defined for
any possible labelling of the source.

For any countable set L whose elements are called labels (and
written α, β, γ...), a labelled signature ΣL is defined as the set
{fα|f ∈ Σ, α ∈ L}. From now on, a L-labelled term denotes
a CRS term over ΣL. In other words, the labels are associated to
the symbols, and never directly to the variables or the bindings.
Remark that the labels are arbitrary objects: in a concrete definition
they can be simple letters as well as richly structured objects.

We write λαx.t (resp. xα) as a shorthand for λα([x]t) (resp.
εα(x)). Write τ(t) for the label of the root symbol of the labelled
term t. Write εα1...αk

k (t) as a shorthand for εα1(...εαk (t)), where
the case k = 0 represents t.

Write |.| the (trivial) map from terms over ΣL to terms over Σ
that removes the labels of all symbols. By requiring the condition
|P(t)| = P(|t|), we get a straightforward extension to ΣL of any
weak β-reduction system P over Σ.

Since neither ε’s nor labels shall interfere with β-reduction,
labelled β-redexes allow any number of ε occurrences and can be
decorated with any labels: for any L, a L-labelled β-redex is a
L-labelled term of the form @α(ε

β1...βk
k (λγx.t), a). Labelled β-

reduction is defined later, since it requires an additional notion of
sharing-via-labelling systems given below.

We consider sets of labels of the form L = VN , generated by
the following grammar for any two countable sets V andN :

VN ::= V | [N ,VN ]

The label [Ω, α] denotes “the label α modified by Ω”. Write
[Ω1...Ωn, α] as a shorthand for [Ω1, ...[Ωn, α]]. Any Ωi is called
a modifier of [Ω1...Ωn, α]. The virginal labels (the labels in V)
denote positions that are free from any past history, they will be
modified into labels of the form [Ω1...Ωn, α] along the reductions.
Let S be a tuple 〈P,N ,V, η, ↪→〉 where:

• P is a weak β-reduction system.
• N is a countable set whose elements are called (redex) names

(notation Ω).
• V is a countable set whose elements are called virginal labels,

with two distinguished elements > and ⊥.
• η is a function from VN -labelled redexes to names.
• ↪→ is a transitive and irreflexive relation onN called contribu-

tion relation.



The terms considered in S are the VN -labelled terms. Call virginal
term a term whose labels are all virginal and different.

Write↑Ω = {Ω′ | Ω′ ↪→ Ω} the set of all the contributors of
the name Ω. Contribution is extended to labels: define↑ α = ∅ if
α is a virginal label, and↑ [Ω, α] = {Ω} ∪ ↑Ω ∪ ↑α otherwise.
Write Ω ↪→ α when Ω ∈ ↑α.
S is a sharing-via-labelling system if the following axioms are

satisfied:

• (Redex contributors)

↑η(@α(ε
β1...βk
k (λγx.t), a))

=
↑α ∪ (

⋃
i ↑βi) ∪ ↑γ

• (Name scope) If λγx.p is in the codomain of P , and at, au
are any terms and t1, ..., tn, u1, ..., un are terms whose free
variables are not bound in λγx.p, then

η(@α(ε
β1...βk
k (λγx.p[t1, ..., tn]), at))

=

η(@α(ε
β1...βk
k (λγx.p[u1, ..., un]), au))

• (Name equality) If η(r) = η(r′) then τ(r) = τ(r′).

The axiom Redex contributors states that the name of a redex
collects the contributors of the essential parts of the redex, that
means its main application, its main λ-abstraction, and all that lays
in between these two positions. The axiom Name scope states that
the name of a redex does not depend of what is deeper than the
smallest prefix of the main abstraction, while axiom Name equality
states that the equality of the names of two redexes implies the
equality of their respective root labels.

Example 7.
Let V be any countable set.

1. The names in Nseq are sequences of labels. Since the names
also take part into the definition of the labels, a mutually recur-
sive definition of names and labels is required:

Nseq ::= L; ...;L
L ::= VNseq

Define the name of a redex as

ηseq(@
α(ε

β1...βk
k (λγx.t), a)) = α;β1; ...;βk; γ

The contribution relation is defined by: Ω ↪→seq α1; ...;αn if
and only if there is at least one i such that Ω ↪→seq αi.
For P ∈ {Pn,Pch}, the system 〈P,Nseq,V, ηseq, ↪→seq〉 is a
sharing-via-labelling system. The definitions ofNseq , ηseq , and
↪→seq correspond to the system presented in [BLM07].

2. The names in Nctx are L-labelled contexts, with once again a
mutually recursive definition using L ::= VNctx . Define

ηctx(@α(ε
β1...βk
k (λγx.t), a)) = @α(ε

β1...βk
k (λγx.p), [])

where P(λγx.t) = λγx.p.
Write Ω ↪→ctx c if there is a label α in c such that Ω ↪→ctx α.
For 〈Pch,Nctx,V, ηctx, ↪→ctx〉 to be a sharing-via-labelling
system, the axiom Redex contributors requires that the prefixes
satisfy the following property: all the contributors of the labels
of a prefix λγx.p contribute to γ. Fortunately, in this system this
property is an invariant of labelled β-reduction (defined below).
The system 〈Pn,Nctx,V, ηctx, ↪→ctx〉 is not a sharing-via-
labelling system since it breaks the axiom Name scope.

Labelled β-reduction is defined by a rule scheme which propa-
gates the name of the reduced redex in the reduced term for record-
ing of the contributions. For this, the constructor [., .] extends to a

function on labelled terms: [Ω, t] is defined as the labelled term t in
which all the labels are modified by the function α 7→ [Ω, α].

Labelled β-reduction in a sharing-via-labelling system is de-
fined by the rule scheme:

@α(ε
β1...βk
k (λγx.p[t1, ..., tn]), a)

→β

ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](a)}[t1, ..., tn]

where λγx.p = P(λγx.p[t1, ..., tn]) and
where Ω = η(@α(ε

β1...βk
k (λγx.p[t1, ..., tn]), a)).

The name Ω is added in three areas of the reduced term:

1. At the root of the contractum, with the new label [Ω,>].

2. At the places where a substitution occurs, with the new label
[Ω,⊥]. Remark in Example 8 how> and⊥work as parentheses
in the syntactic tree of the term.

3. In the prefix of the main abstraction of the redex, as an addi-
tional modifier to pre-existing labels.

Remark that these three places follow the three cases of redex
creation given in Section 2.1 and that removing the labels in this
rule yields exactly the unlabelled β-reduction of Section 2.1.

Example 8.
Let r = @α(λγx.@δ(@ι(xµ, xν), λκy.yσ), a) be a β-redex. We
reduce r in two sharing-via-labelling systems of Example 7.

1. In 〈Pn,Nseq,V, ηseq, ↪→seq〉 the name of r is the sequence
Ω = α; γ, and the prefix of the λ-abstraction is its whole body.
Then all the labels are modified in the contractum:

@α

λγx

@δ

@ι

xµ xν
λκy

yσ

a
ε[Ω,>]

@[Ω,δ]

@[Ω,ι]

ε[Ω,µ] ε[Ω,ν]

ε[Ω,⊥] ε[Ω,⊥]

λ[Ω,κ]y

y[Ω,σ]

a a

2. In 〈Pch,Nctx,V, ηctx, ↪→ctx〉, the name of r is the labelled
context Ω = @α(λγx.@δ(@ι(xµ, xν), []), []). The only mod-
ified labels are those of the prefix of the λ-abstraction, marked
with bold lines below.

@α

λγx

@δ

@ι

xµ xν
λκy

yσ

a
ε[Ω,>]

@[Ω,δ]

@[Ω,ι]

ε[Ω,µ] ε[Ω,ν]

ε[Ω,⊥] ε[Ω,⊥]

λκy

yσ

a a

This section ends with the two lemmas 2 and 3, which show
how the labels reflect the contribution relation between redexes. In
particular, the name of a redex r characterizes the past reductions
that led to the creation of r.



Lemma 2 (Redex stability). Let r be a (non frozen) redex of a
term t. If rd is a descendant of r after a reduction ρ : t→β t

′, then
rd is still a (possibly frozen) redex and η(rd) = η(r).

Lemma 3 (Direct contribution). If a redex of name Ωc is created
by the reduction of a redex of name Ω, then Ω ↪→ Ωc.

2.3 Sharing
This section proves the main property of sharing-via-labelling sys-
tems: parallel labelled reduction simulates graph reduction (The-
orem 1). As in [BLM07], the labelled terms are linked to graphs
with the sharing-via-labelling principle seen in the introduction: la-
bels are interpreted as memory locations. The proof of the simula-
tion is then done by ensuring that the two following invariants are
preserved by parallel labelled reduction:

1. A term t has the sharing property, written S(t), when any two
subterms of t with same label are syntactically equal. This is
the main property we want to preserve.

2. A term t has the maximality property, written M(t), when for
any (non frozen) redex of name Ω and any subterm of label
α in t it is not true that Ω ↪→ α. This property is widely
used in the subsequent proofs, it ensures in particular that all
the occurrences of a given label are created at the same time
(see Example 9). Lemmas 2 and 3 are the cornerstone of the
preservation of the maximality property.

Parallel labelled reduction is defined for any term t satisfying
the sharing property S(t): let α be the label of a (non frozen) redex
of t. Since S(t) holds, all the redexes labelled by α are equal
and have disjoint positions (however, some may be frozen). The
parallel labelled reduction of α, written t α

=⇒β t
′, is then defined as

the simultaneous replacement of all the (non frozen) redexes with
label α by their contractum. By lemmas 1 and 2, parallel labelled
reduction is well defined as a sequence of single steps, for instance
any iterated reduction of the non frozen redexes with label α.

Theorem 1 (Preservation of sharing). If M(t), S(t) and t
α0=⇒β

t′, then M(t′), and S(t′).

Proof. (Sketch) Verification of M(t′). Suppose there is a redex r′

with name Ω′ and a subterm u′ with label α′ in t′ such that Ω′ ↪→
α′. If r′ is created by the reduction, then Lemma 3 contradicts
M(t). Else, Lemma 2 and axiom Redex contributors contradict
either M(t) or axiom Name equality.

Verification of S(t′). Let u′ and v′ be two subterms of t′ with
same label α′. By case on the origin of both labels α′: if one is
created and the other is a descendant of a label α′ of t, then by
M(t) and Lemma 3 we reach a contradiction, else both have the
same origin and evolution (using S(t)).

Example 9 shows why maximality M is necessary to the preser-
vation of sharing S.

Example 9.
Consider the system 〈Pch,Nseq,V, ηseq, ↪→seq〉 defined in Exam-
ple 7 and the labelled term t = @α(x[γ;δ,ι],@γ(λδz.zι, yκ)). The
property S(t) holds since all the labels of t are different. Remark
that t contains a redex @γ(λδz.zι, yκ) of name γ; δ. Hence M(t)
does not hold since t contains a label [γ; δ, ι].
Then t

γ
=⇒β @α(x[γ;δ,ι], ε[γ;δ,ι](yκ)) = t′ where the two subterms

of t′ with label [γ; δ, ι] are different: S(t′) is falsified.

Finally, labelled terms represent graphs and parallel labelled
reduction represents graph reduction.

3. Full laziness
This section shows how the various known implementations of full
laziness correspond to several (at least three) different sharing-via-
labelling systems (Section 3.1). Thus, they correspond to different
graph reductions featuring different amounts of sharing. However,
we are going to prove in Section 3.2 that these implementations are
reduction-wise equivalent.

Along this section, the signature Σ is restricted to {@, λ, ε}.

3.1 Encodings into sharing-via-labelling systems
The motto of sharing-via-labelling is “labels denote memory loca-
tions”. What happens to the labels during reduction describes di-
rectly what happens to the nodes of the corresponding graph:

• A new label corresponds to a new node. There are two cases:

A label of the form [Ω,>] or [Ω,⊥] appears only on ε. It
represents a new indirection node that contains a pointer
leading to the term.

Any other [Ω, α] denotes a new copy of a node labelled α.
• An unchanged label is a node unaffected by the reduction.

The key of the encoding of graph reduction systems or closure-
based systems into sharing-via-labelling systems is to modify ex-
actly the labels of what is needed to be copied. Since the rules of
a sharing-via-labelling system modify exactly the labels of the pre-
fix of the main λ-abstraction, this amounts to take as prefix of a
λ-abstraction exactly what has to be duplicated of its body.

Remark 1. Our β-rule falsely suggests that an arbitrary number
of indirections can be contracted in unit time. The techniques pre-
sented in [Jon87] can be used to avoid chains of indirections.

To describe the encodings of the higher-order approaches to full
laziness into sharing-via-labelling systems, we formally define two
useful prefixes mentioned in Example 4.

• Call spine of a term λx.t the prefix λx.p where p is the prefix
of t which contains exactly the positions that are above a free
occurrence of x, including the free occurrences of x. Remark
that in any weak β-reduction system P , any prefix P(λx.t)
contains the spine of λx.t.

• Call skeleton of a term λx.t the prefix λx.p where p is the
prefix of t containing exactly the positions that are not in a free
expression of λx.t. As done in [SW05] the skeleton can also be
seen as an iterated spine: to get the skeleton of λx.t, start with
the spine of λx.t and iteratively add to the obtained prefix the
spines of all the λ-abstractions that are in the prefix built so far.

The two approaches by C.P. Wadsworth [Wad71] and O. Shivers
and M. Wand [SW05] reach fully lazy sharing by two graph imple-
mentations in which the duplicated part of an instantiated function
is its skeleton. The former uses the definition based on the maximal
free expressions while the latter follows the characterization by it-
erated spine. They are both represented by the weak β-reduction
system Pch such that Pch(λx.t) is the skeleton of λx.t.

In [Ses97], P. Sestoft revises Launchbury’s lazy semantics [Lau93]
and proposes a fully lazy variant using additional let-bindings: if
λx.p is the skeleton of λx.t and λx.t = λx.p[t1, ..., tn], then λx.t
is replaced by let x1 = t1, ..., xn = tn in λx.p[x1, ..., xn] with
x1, ..., xn fresh variables. After this extraction of the maximal free
expressions t1, ..., tn of λx.t, a duplication of the λ-abstraction
duplicates the subterm λx.p[x1, ..., xn] but does not duplicate the
let-parameters t1, ..., tn. This is again represented by the weak
reduction system Pch.

The work by T. Blanc, J.-J. Lévy and L. Maranget [BLM07]
already uses a system isomorphic to a sharing-via-labelling system.



Their labelled β-reduction modifies only the labels of the spine of
the main λ-abstraction. Thus it corresponds to a weak β-reduction
system Pblm where Pblm(λx.t) is the spine of λx.t. Moreover
their frozen redexes are the redexes containing a free occurrence
of a variable bound above: they coincide with those given by Pch.

In their call-by-need λ-calculus [AF97], Z. Ariola and M. Felleisen
allow the substitution, and thus the duplication, of values. Their
fully lazy extension consists in restricting these allowed duplica-
tions to a set of fully lazy values: values that do not contain any
“free expression”. The difference with the previous cases lies in
their non-standard definition of free expressions: they use the usual
criterion given in Section 1.2 but they exclude the variables and
the λ-abstractions. Hence their fully lazy values correspond to the
prefixes of the weak β-reduction system Paf such that:

• If λx.p is the skeleton of λx.t and λx.t = λx.p[t1, ..., tn] then
Paf (λx.t) = λx.p[P�

af (t1), ...,P�
af (tn)].

• P�
af (λx.t) = Paf (λx.t).

• P�
af (@(t1, t2)) = [].

• If P�
af (t) = [] then P�

af (ε(t)) = [] else P�
af (ε(t)) = ε(P�

af (t)).

Finally, the higher-order approaches [Wad71, AF97, Ses97,
SW05, BLM07] to full laziness correspond to three different weak
β-reduction systems Pch, Pblm and Paf , which we are going to
relate in the next section. Example 10 illustrates how the systems
Pblm andPaf can yield the same parallel labelled reduction in spite
of their differences.

Example 10.
Let t = λx.λy.@(@(x, r1), λz.r2) be a term such that r1, r2 are
two redexes that do not contain any free occurrence of x. Hence a
duplication of the spine Pblm(t) of t (marked with bold lines in the
picture) do not duplicate these redexes.

λx

λy

@

@

x
r1

λz

r2

y z
If r1 (resp. r2) contains a free occurrence of y (resp. z), then
both redexes are at least partially contained in Paf (t), and thus
duplicated in this system. However, in this case r1 and r2 are and
remain frozen in both systems, and their label will change before
they are unfrozen: the additional duplications are not harmful.

3.2 Equivalence of the parallel labelled reductions
In this section we define a familyW of weak β-reduction systems
that contains Pch, Pblm and Paf and we show that all the sharing-
via-labelling systems based on the weak β-reduction systems ofW
are equivalent, in the sense that they can simulate one another using
exactly the same number of shared reduction steps. For this we
define a relation ∼ on labelled terms which is stable by reduction,
and prove that any two terms in relation share the same non-frozen
redexes. The relation∼ relates two terms t1 and t2 of two different
systems S1 and S2 whenever t1 and t2 can be reached from a
common source by two equivalent reduction sequences in S1 and
S2 (the whole being called a mirror reduction sequence).

The definition of W follows two ideas: the weak β-reduction
systems in W shall enforce CH-weak reduction (for this the third
point in particular prevents some applications to be included into a
prefix), and all the prefixes are built from spines and skeletons (the
first two points, which make the proofs tractable).

A weak β-reduction system P is in W if the following addi-
tional conditions are satisfied:

• For each abstraction t = λx.u, either P(t) is the spine of t, or
P(t) = p[P�(t1), ...,P�(tn)] where p is the skeleton of t and
t = p[t1, ..., tn].

• For any λx.t, P�(λx.t) = [] or P�(λx.t) = P(λx.t).

• P�(@(t1, t2)) = [].

• If P�(t) = [] then P�(ε(t)) = [] else P�(ε(t)) = ε(P�(t)).

Let P1 and P2 be two systems of W . A mirror reduction
sequence in the systems P1 and P2 is a pair (%1, %2) such that
%i = ρ1

i ...ρ
n
i is a reduction sequence in Pi and for any j ∈ {1...n}

the redexes reduced by the single steps ρj1 and ρj2 have the same
position qj in the respective source terms. The notion of mirror
reduction sequence extends to parallel labelled reduction in two
sharing-via-labelling systems based on two (possibly equal) weak
β-reduction systems ofW .

Let t1 (resp. t2) be a term in a sharing-via-labelling system S1

(resp. S2). Write t1 ∼ t2 when there is a virginal term t0 in the
intersection of S1 and S2 and a mirror reduction sequence (%1, %2)
in the systems S1 and S2 such that %i is a parallel labelled reduction
sequence from t0 to ti.

Remark 2. If t1 ∼ t2 then the two terms have the same set of posi-
tions. In particular they contain the same number of ε occurrences.

For any labelled term t, the labels in t induce an equivalence
relation on the subterms of t. Say that two subterms u1 and u2 of t
are label-equivalent if and only if τ(u1) = τ(u2).

Theorem 2 (Sharing equivalence). If t1 ∼ t2 then the labellings
of t1 and t2 induce the same label-equivalence on their non frozen
applications.

Proof. (Sketch) We prove two invariants on the pair (t1, t2):

1. The equivalence classes of non frozen applications are equal.
2. In each spine, the equivalence classes of applications are equal.

By definition of t1 ∼ t2 there is a parallel labelled mirror reduction
sequence (%1, %2) leading from a virginal term t0 to (t1, t2). The
proof of both invariants is by induction on the number of parallel
steps in (%1, %2). Remark by Theorem 1 that any intermediate term
t in the mirror reduction sequence satisfies M(t) and S(t).

Theorem 2 proves in particular that ∼ is a bisimulation: any

diagram
t

t′

u
β

∼
or

t u

u′

∼
β can be closed as

t

t′

u

u′

β

∼
β

∼
This means that inW , two sharing-via-labelling systems generate
the same notion of parallel labelled reduction. In other words, their
(possibly different) sharings have the same impact on the reduction.
This applies in particular to Pch, Pblm and Paf , and thus it shows
that all the notions of full laziness in [Wad71, AF97, Ses97, SW05,
BLM07] define the same reduction spaces.

4. Fully lazy λ-lifting
The primary goal of the present section is to prove that the notion
of full laziness defined by fully lazy λ-lifting in [Hug82, Jon87]
is equivalent to the unified notion of the previous section. This
study of λ-lifting also reveals a strong relationship between optimal
sharing in weak λ-calculi [BLM07] and the optimality theory of
first-order rewriting [Mar91, Ter03].

In this section fully lazy λ-lifting is ultimately seen as a mor-
phism between two systems: the source is the set of the λ-terms



equipped with weak β-reduction, whereas the target is the set of
first-order terms built with supercombinators equipped with their
associated first-order reduction rules. However, the source and the
target system are mixed in the intermediate steps. Fully lazy λ-
lifting is then defined as an endomorphism of an object system
combining the source and the target.

Our object system is a CRS over a labelling of the signature Σ
defined in Section 2.1. The weak β-reduction is as defined in Sec-
tion 2. The supercombinators forming the target subsystem are rep-
resented by the symbols in F =

⋃
n Fn and their reduction rules

are defined in Section 4.1. Fully lazy λ-lifting itself is represented
by a set of CRS rules which is proved to be confluent (Lemma 4), to
be strongly normalizing (Lemma 5), to preserve one-step reduction
(Theorem 3) and to preserve shared reduction (Theorem 4). Since
we aim for this last result on shared reduction and since shared re-
duction is formalized in this paper by the labels, our λ-lifting is
defined on labelled terms.

Section 4.1 introduces an extension of sharing-via-labelling sys-
tems and defines fully lazy λ-lifting as a rewriting process. Sec-
tion 4.2 proves that fully lazy λ-lifting is a bisimulation between
the source system and the target system, and Section 4.3 proves
that parallel labelled fully lazy λ-lifting preserves optimal sharing.

4.1 Fully lazy λ-lifting systems
This section introduces the fully lazy λ-lifting systems as an exten-
sion of the sharing-via-labelling systems. Then, λ-lifting is defined
as a CRS reduction in a fully-lazy λ-lifting system. This reduction
is confluent and strongly normalizing.

The basic mechanism of λ-lifting is the replacement of a whole
prefix by a supercombinator, the prefix and the supercombinator
being related by an abstract invertible function called contractor.
In order to preserve sharing, this replacement has to preserve all
the information contained in the labels. Our solution consists in la-
belling the supercombinator with a structured label containing all
the labels of the contracted prefix. Hence the basic operations of
λ-lifting are reversible, and we define two inverse transformations
(contraction and expansion) which reversibly relate labelled pre-
fixes and labelled supercombinators.

Fully lazy λ-lifting is related in this paper to the weak β-
reduction system Pch of Example 5, whose definition is reminded
below. The ch subscript is omitted along this section.

• P(λx.t) is the skeleton of λx.t.

• P�(t) = [] for any term t.

The structured labels used for labelled λ-lifting are tree-shaped,
similarly to terms (see Example 11). For any countable set V
(whose elements are called atomic labels), the set V̂ of tree labels
over V is defined by the following grammar:

V̂ ::= � | > | ⊥ | V | V̂(V̂, ..., V̂)

The label � is an “empty” label which is used to denote the lack
of label of the empty context [] (see Example 11). The labels in
V̂ are used as virginal labels along this section. A tree label is
well-formed when no atomic label appears twice in it. For any
Ω1, ...,Ωn, a label [Ω1...Ωn, α] with α ∈ V̂ is well-formed when
α is well-formed.

The clash relation is defined on tree labels as: α o β when
α and β have an atomic label in common. The notion is used in
Section 4.3 to express invariants on labels. For any V and any
N , the clash extends to V̂N as follows: α o β if and only if
α = [Ω1...Ωn, α

∗] and β = [Ω1...Ωn, β
∗] with α∗, β∗ ∈ V̂ and

α∗ o β∗.
A contractor is an injective partial function ϕ mapping unla-

belled n-ary skeletons to unlabelled n-ary function symbols. For

any set of atomic labels V and any set of names N , a contractor ϕ
is extended to V̂N -labelled skeletons and V̂N -labelled symbols by
the following rules.

• If p is labelled with virginal labels, then ϕ(p) = fα such that
f = ϕ(|p|) and α = ‖p‖, where

‖[]‖ = �
‖xα‖ = α
‖εα(t)‖ = α(‖t‖)
‖λαx.t‖ = α(‖t‖)

‖@α(t1, t2)‖ = α(‖t1‖, ‖t2‖)
‖fα(t1, ..., tn)‖ = α(‖t1‖, ..., ‖tn‖)

• If p can be decomposed as p = [Ω, p′], then ϕ(p) = [Ω, ϕ(p′)].
• Else, ϕ(p) is undefined.

The extension of ϕ to labelled skeletons is still injective, hence the
labelled ϕ admits an inverse.

Example 11.

1. Consider the skeleton p = λαx.@β([], λγy.@δ(@κ(yν , []), xι)).
The collected label is ‖p‖ = α(β(�, γ(δ(κ(ν,�), ι)))). It is
interesting to compare the graphical representations of the pre-
fix and the label:

λx

@

[] λy

@
x@

y []

α

β

� γ

δ
ικ

ν �

2. Suppose ϕ(λx.@([], x)) = g. Then
• ϕ−1(gα(β(�,γ))) = λαx.@β([], xγ)
• ϕ−1(g[Ω,α(β(�,γ))]) = λ[Ω,α]x.@[Ω,β]([], x[Ω,γ])
• ϕ−1(gα(β(δ(ι),γ))) is undefined because the label has not

the same structure as ϕ−1(g).
• ϕ(λ[Ω1,α]x.@[Ω2,β]([], x[Ω2,γ])) is undefined because the

labels have different modifiers Ω1 and Ω2.

For any set of atomic labels V , for any set of names N and
for any contractor ϕ, ϕ-contraction and ϕ-expansion are two CRS
rule schemes on V̂N -labelled terms. For any skeleton λαx.p and
symbol fβ such that ϕ(λαx.p) = fβ we have the two rules:

(ϕ-contraction) λαx.p[Z1, ..., Zn] →c fβ(Z1, ..., Zn)
(ϕ-expansion) fβ(Z1, ..., Zn) →e λαx.p[Z1, ..., Zn]

Call an object redex a labelled term having one of the two
following forms:

(source redex) @α(ε
β1...βk
k (λγx.t), a)

(target redex) @α(ε
β1...βk
k (fγ(t1, ..., tn)), a)

Remark that the set of object redexes is stable by→c and→e.
A fully lazy λ-lifting system is a tuple 〈ϕ,N ,V, η, ↪→〉 such that:

• 〈P,N , V̂, η, ↪→〉 is a sharing-via-labelling system.
• ϕ is a contractor.
• P commutes with ϕ-contraction and ϕ-expansion.
• η is a function from object redexes to names that is stable by
ϕ-contraction and ϕ-expansion.

In a fully lazy λ-lifting system 〈ϕ,N ,V, η, ↪→〉 we consider L-
labelled terms with L = V̂N .



Example 12 shows a straightforward extension of the function
ηseq of Example 7 which is not stable by contraction. Example 13
then gives stable variants of the functions ηseq and ηctx.

Example 12.
Consider the redex r = @α(λγx.@δ(xι, yκ), a), which can be ϕ-
contracted to r′ = @α(fγ(δ(ι,�))(yκ), a) for some unary symbol
f . Then ηseq(r) = α; γ and ηseq(r′) = α; γ(δ(ι,�)): the name is
not stable.

Example 13.

1. Define η′seq(@
α(ε

β1...βk
k (λγx.t), a)) = α;β1; ...;βk; δ with

γ = [Ω1...Ωn, γ
∗] and δ = [Ω1...Ωn, δ

∗] where γ∗ is virginal
and δ∗ is the leftmost atomic label of γ∗. This name function
is stable since the leftmost atomic label is stable by contraction
and expansion.

2. If P(λx.t) = p, then define η′ctx(@α(ε
β1...βk
k (λγx.t), a)) =

@α(ε
β1...βk
k (fδ([], ..., [])), []) where fδ is the unique normal

form of λγx.p by λ-lifting (see definition of λ-lifting and lem-
mas 4 and 5 below). This name function is stable by normaliza-
tion.

We call source reduction the β-reduction, whose rule scheme
can be simplified:

@α(ε
β1...βk
k (λγx.p[Z1, ..., Zn]), Z)

→β

ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](Z)}[Z1, ..., Zn]

where λγx.p is a skeleton and
where Ω = η(@α(ε

β1...βk
k (λγx.p[z1, ..., zn]), z)).

We call target reduction the first-order reduction defined by
the scheme:

@α(ε
β1...βk
k (fγ(Z1, ..., Zn)), Z)

→t

ε[Ω,>]([Ω, p]){x:=ε[Ω,⊥](Z)}[Z1, ..., Zn]

where ϕ−1(fγ) = λδx.p and
where Ω = η(@α(ε

β1...βk
k (fγ(z1, ..., zn)), z)).

Call object reduction the union of source reduction and target
reduction:→o =→β ∪ →t.

Remark 3. Target reduction can be decomposed by ϕ-expanding
the function symbol and then applying β-reduction.

Remark 4. Consider the system S = 〈Pch,Nctx,V, η′ctx, ↪→ctx〉
where Nctx and ↪→ctx are defined in Example 7, η′ctx is defined in
Example 13, and V is any countable set. The target reduction of S
is isomorphic to what is called Lévy-labelling in [Ter03, Chap. 8].

For a clean definition of λ-lifting and for simple proofs of its
basic properties we use an extended notion of positions of a term.
The so-called ϕ-positions contain the usual syntactic positions but
also the positions that are “hidden” in supercombinators: through
the contractor ϕ each symbol represents a prefix, and the positions
of these prefixes are taken into account in ϕ-positions.

The setQ(t) of ϕ-positions of t is defined by:

Q(x) = {ε}
Q([]) = {ε}
Q(ε(t)) = {ε} ∪ 1.Q(t)

Q(λαx.t) = {ε} ∪ 1.Q(t)

Q(@α(t1, t2)) = {ε} ∪ 1.Q(t1) ∪ 2.Q(t2)

Q(fα(t1, ..., tn)) = {ε} ∪ 0.Q(ϕ−1(fα)) ∪ (
⋃
i

i.Q(ti))

The following cases define λ-lifting as a CRS reduction:

• (Reify) If λαx.p is a skeleton such that ϕ(λαx.p) = fβ , then
λαx.p[Z1, ..., Zn]

ε−→lft fβ(Z1, ..., Zn)

• (Inside) If ϕ−1(fα)[x1, ..., xn]
q−→lft ϕ−1(gβ)[x1, ..., xn]

where x1, ..., xn are fresh variables then

fα(Z1, ..., Zn)
0.q−−→lft gβ(Z1, ..., Zn)

• (Context) If t
q1−→lft t

′ and c is a unary context with a hole at
position q2, then

c[t]
q2.q1−−−→lft c[t′]

While Reify is the main rule of λ-lifting, Inside allows us to close
confluence diagrams (see Example 14) and to consider λ-lifting
as an orthogonal rewriting system (in the sense of [GKK05]). An
Inside reduction can be seen as a reduction Reify inside a symbol.
An equivalent of Inside naturally appears in [AF97] or [Ses97] as a
reduction in the context of a let ... in ... construct. Please note that
in the rule Context, c is an arbitrary context. This means that there
is no particular weak restriction here.

Example 14.
Let t = λαx.@β(@(z1, z2), λγy.@δ(@κ(yν , z3), xι)) be a la-
belled term, where some labels are omitted. Write

ϕ−1(f) = λx.@([], λy.@(@(y, []), x))
µ = α(β(�, γ(δ(κ(ν,�), ι))))

ϕ−1(g) = λy.@(@(y, []), [])
σ = γ(δ(κ(ν,�),�))

ϕ−1(f ′) = λx.@([], g([], x))
µ′ = α(β(�, σ(�, ι)))

The dotted lines denote the skeleton of the abstraction λγy, while
the bold lines (solid or dotted) denote the skeleton of the abstrac-
tion λαx.
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@β

@
z1 z2

λγy

@δ

xι@κ

yν z3

1.2
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@β

@
z1 z2
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xιz3

ε

ε

fµ

@
z1 z2

z3
0.1.2

Inside

f ′µ
′

@
z1 z2

z3

Remark 5. The reduction Reify is a straightforward use of con-
traction→c, and the reduction Inside can be factorized using con-
traction →c and expansion →e: if t →lft t

′ by Inside, then there
are u and u′ such that t→e u→c u

′ →c t
′.

Lemma 4 (Diamond property). If t →lft u and t →lft v with
u 6= v then there is w such that u→lft w and v →lft w.

Lemma 5 (Termination). The system→lft is strongly normalizing.

Lemma 4 implies that →lft is confluent, and that all the →lft-
sequences between two given terms have the same length [Ter03].
An immediate corollary of lemmas 4 and 5 is that any term has a
unique→lft-normal form.



4.2 Fully-lazy λ-lifting as a bisimulation
This section proves that→lft does not only transform terms but also
reduction sequences, and that the transformation operates forward
as well as backward. Formally, the reflexive-transitive closure of
the relation →lft (written �lft) is a bisimulation between →o and
itself. Thanks to the CRS formalism which allows reasoning on the
intermediate steps of the transformation, the proof can be reduced
to a one-step simulation property (Lemma 6).

Lemma 6 (One-step simulation).
• If t′ o← t→lft u then there is u′ such that t′ �lft u

′
lft← u.

• It t→lft u→o u
′ then there is t′ such that t→o t

′ �lft u
′.

Proof. (Sketch) By case on the relative positions of the two redexes.
Most cases use the stability of η and the commutation of P with
→lft. The diagram is closed by t′ �lft u

′ because a→o-reduction
can destroy or duplicate the considered→lft-redex.

Lemma 6 yields as immediate corollary:

Theorem 3 (Bisimulation). The relation �lft is a bisimulation
between the reduction→o and itself, which means that any diagram

t

t′

u
o

lft

or
t u

u′

lft

o can be closed as
t

t′

u

u′
o

lft

o

lft

This bisimulation is a strong property for λ-lifting: it associates
a progressive transformation of reduction sequences to the progres-
sive transformation of terms. Moreover, there is a bijection be-
tween the single steps of the image and the antecedent reduction
sequences. In the next section, we show that this holds also for par-
allel labelled reduction.

4.3 Fully-lazy λ-lifting as a graph bisimulation

For r ∈ {β, t, o, c, e, lft}, write α
=⇒r the simultaneous reduction

of all the →r-redexes of label α in a term satisfying the sharing
property S. This last section shows that =⇒lft preserves sharing:
the same subterms are shared in the source and in the target of
this reduction. This allows us to conclude that the full lazinesses
of [Wad71] and [Jon87] are bisimilar.

In this section we use again the invariants S and M introduced
in Section 2.3. In our new setting we extend M to any object redex.
We moreover use the following three invariants:

3. Say a term t has the independent labelling property, written
I(t), when all the labels of t are well-formed and there is no pair
of labels (α, β) of t such that α 6= β and α o β. This property
is useful to ensure that contraction and expansion do not break
the sharing property.

4. Say a term t has the tuned skeletons property, written T(t),
when every skeleton p in t is of the form [Ω1...Ωn, p

∗] where
p∗ has only virginal labels. This property allows applying a con-
tractorϕ to any prefix, and rules out the last case of Example 11.

5. Say a term t has the harmonious binding property, written
H(t), when any two variables with the same label are either
both free or both bound by abstractions bearing the same label.
This property strengthens the sharing property: when both are
present, two whole skeletons are shared whenever one of their
nodes is shared.

Finally, say a term t has the SMITH property (written SMITH(t))
when the five properties are satisfied by t as well as by ϕ−1(fα)
for any fα appearing in t (or recursively in the antecedent by ϕ of
a symbol).

Lemma 7. For any r ∈ {β, t, o, c, e, lft} and any two terms t, t′,
if SMITH(t) and t

α0=⇒r t
′ then SMITH(t′).

Proof. (Sketch) By remarks 3 and 5 we need only consider the cases
where r ∈ {β, c, e}. As in Theorem 1 the proof is by case analysis
on the origin of the considered labels.

Theorem 4 (Preservation of optimal sharing). Let t be a term
such that SMITH(t). Suppose t

α0=⇒lft t
′. Let u′ (resp. v′) be a

subterm of t′, with ancestor u (resp. v) in t. Then τ(u′) = τ(v′) if
and only if τ(u) = τ(v).

Proof. Suppose τ(u′) = τ(v′) = α′. Case on the origin of α′:

• If τ(u) = τ(v) = α′, it’s over.
• If τ(u) = α′ and τ(v) 6= α′, then τ(v) = α0 such that
α0 = [Ω1...Ωn, α

∗
0] and α′ = [Ω1...Ωn, α

∗] with α∗0 appearing
into α∗, which implies α′ o α0 and contradicts I(t).

• If τ(u) 6= α′ and τ(v) 6= α′ then τ(u) = τ(v) = α0.

Suppose τ(u) = τ(v) = α. If α 6= α0, then τ(u′) = τ(u) =

τ(v) = τ(v′). Else u = v, u
α0=⇒lft u

′, v
α0=⇒lft v

′ and u′ = v′. In
particular τ(u′) = τ(v′).

Finally, write t ≈ t′ is t and t′ are =⇒lft-convertible. We deduce that

any
t

t′

u
o

≈
or

t u

u′

≈
o can be closed as

t

t′

u

u′

o

≈
o

≈
This implies that the implementations of full laziness in [Wad71]
and [Jon87] define the same reduction space, which also corre-
spond to optimal sharing along [Mar91, Ter03] for the first-order
system defined by the target reduction→t, and to optimal sharing
along [BLM07] for the CH-weak reduction of the λ-calculus.

5. Conclusion
Sharing, and in particular fully lazy sharing, is described and imple-
mented by different technical tools including graphs, closures, and
program transformations. As a consequence, the many definitions
of fully lazy sharing [Wad71, Jon87, Ses97, AF97, SW05, BLM07]
are sometimes hardly comparable. Yet they all intend to implement
the same basic ideas.

This paper unifies all these views of full laziness. To achieve
this we define an axiomatic framework of sharing-via-labelling
systems, in which the various approaches can be expressed. Then
we prove that all the resulting systems are bisimilar, in the sense
that they have isomorphic reduction spaces.

In particular, by linking [BLM07] to other definitions of full
laziness, we confirm the intuition of its authors that fully lazy shar-
ing gives an optimal sharing for the weak λ-calculus of [ÇH98].

Last but not least, we show that weak reduction in λ-calculus
can be expressed in orthogonal first-order rewriting by means of
fully lazy λ-lifting, with a one-to-one correspondence between
their reduction steps. This remarkable last property makes our first-
order formulation really different from the formulations that use de
Bruijn indices or explicit substitutions [Tur79, Mar91]. Moreover,
our transformation preserves optimal sharing and expresses fully
lazy sharing as optimal sharing for the target first-order system.

5.1 Related work
Related approaches to the efficient implementation of functional
programming languages include in particular the study of optimal
reduction and the attempts to implement it. The study of optimal
reduction [Lé80, Mar91, GK96, vO96, BLM07] traditionally uses
three equivalent characterizations called labelling, extraction, and



zig-zag. This paper extends the labelling-based characterization of
optimality to weak β-reduction systems.

The possibility of a straightforward implementation in graphs
of the label-based characterization of optimality has for long been
known to be a feature of first-order rewriting [Mar91] that did not
hold in the λ-calculus. However, more recently this feature has
been observed in a weak restriction of the λ-calculus [BLM07].
The present paper confirms this observation by showing that it
holds in any weak β-reduction system, and explains this first-order
behaviour of weak reduction by expliciting a link between weak
β-reduction systems and first-order rewriting.

Two kinds of implementations are known to perform less shared
β-reduction steps than some fully lazy implementations. In par-
ticular partial evaluation [HG91] has been compared to [Jon87],
and optimality [Lé80] is born as an idealization of [Wad71]. Hence
this paper shows that partial evaluation [HG91] as well as any im-
plementation of optimality [AG98, PQ07] is able to perform less
shared β-reduction steps than any implementation of full laziness.

On the other hand, a global comparison between all these ap-
proaches is still missing. In particular, the following facts keep the
question open for now: the number of shared β-reduction steps in
a fully lazy system is polynomially related to the actual cost of
performing the reduction on a Turing machine (simple extension
of [LM09]), but this does not hold with optimal sharing [AM98].

5.2 Future work
Fully lazy λ-lifting is shown to be a powerful tool to give a faith-
ful first-order account of higher-order systems. This phenomenon
prompts us to carry on investigations in at least two directions.

• Generalization of λ-lifting to any weak β-reduction system sat-
isfying our axioms. Two interesting and challenging examples
would be the plain λ-lifting of [Joh85], in which the prefixes
are not stable by reduction, and a new notion of λ-lifting based
on Pblm, which would turn the spines into supercombinators.
Since the spines can bind variables in their holes, some function
symbols would also bind some variables in their arguments.

• Generalization of sharing and λ-lifting to higher-order rewrit-
ing, which includes richer systems that rewrite functions, such
as proof assistants and compilers. As far as the author is aware,
general higher-order rewriting knows no notion of weak reduc-
tion, sharing-via-labelling, or λ-lifting. However, the present
work seems to be abstract enough to be generalized to higher-
order frameworks such as combinatory reduction systems.
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