
Weak Optimality, and the Meaning of Sharing

Thibaut Balabonski
INRIA, Gallium team

thibaut.balabonski@inria.fr

Abstract
In this paper we investigate laziness and optimal evaluation strate-
gies for functional programming languages. We consider the weak
λ-calculus as a basis of functional programming languages, and we
adapt to this setting the concepts of optimal reductions that were
defined for the full λ-calculus. We prove that the usual implementa-
tion of call-by-need using sharing is optimal, that is, normalizing
any λ-term with call-by-need requires exactly the same number
of reduction steps as the shortest reduction sequence in the weak
λ-calculus without sharing. Furthermore, we prove that optimal
reduction sequences without sharing are not computable. Hence
sharing is the only computable means to reach weak optimality.

Categories and Subject Descriptors I.1.3 [Languages and Sys-
tems]: Evaluation strategies

General Terms Theory, Languages

Keywords Strategies, Laziness, Weak reduction, Sharing, Optimal-
ity, Computability.

1. Introduction
The computation steps described by a functional program can
usually be scheduled in many different ways. However, the schedules
do not all have the same efficiency. Consider for instance the
following program:

let id x = x
and cst1 x = 1
and diag x = (x, x)
in

diag (cst1 (id 2))

Its reduction space, that is, the directed graph that sums up all
the possible evaluations of the program, is pictured in Fig. 1. Each
evaluation strategy choses a path in this graph.

In particular, call-by-value reaches the result in three evaluation
steps, with one inefficiency: it evaluates the argument id 2, which
is not needed, since its value is going to be discarded by the function
cst1. Call-by-name also reaches the result in three evaluation steps,
with another inefficiency: it performs twice the call to the function
cst1 that is duplicated by the function diag.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500606

•

•

•

•
•

•

•

• ••
•

•

• •

Figure 1. Reduction space

There are two ways of evaluating this program in only two
steps. The first one is an hybrid strategy that first performs the
call to cst1 and then the call to diag. The second one, call-by-
need, combines call-by-name with an additional mechanism of
memoization or sharing, which enables a re-use of already-computed
results, and which is meant to make up for duplications. This
additional mechanism adds shortcuts in the original single-step
reduction space.

Since its introduction by Wadsworth’s in 1971, call-by-need is
considered as a good strategy for avoiding at the same time non-
needed and duplicated computation steps. The point of this paper is
to turn this folkloric fact into a precise theorem.

In particular we will prove that call-by-need is an optimal
strategy with respect to some reasonable restriction of the λ-calculus,
that is, call-by-need always reaches the result of a computation in
the least number of evaluation steps, or, call-by-need always picks
the shortest path in some realistic reduction space.

The restriction that we consider comes from the following re-
mark: the λ-calculus is too powerful for most functional program-
ming languages. Indeed, while different languages use different
strategies, most of them use only a subset of the reduction space
known as weak evaluation, in which no anticipated evaluation of
a function body is performed before the function is applied to its
arguments. With this restriction to weak evaluation we lose some
strategies, and the shortest path in the full reduction space of the
λ-calculus may not be preserved in the weak reduction space, as
shown in the following example.

Example 1.1.
Let a be a fresh variable. Consider the λ-term

t = (λx.x(xa))(λy.(λz.z)y)

Its normal form is a, and it can be reached in four β-steps by
first reducing λy.(λz.z)y to λy.y. If we restrict ourselves to weak
reduction however, we need five steps to reach the result.

However, we consider weak evaluation as more realistic than
the full λ-calculus, since this restriction is crucial for the imple-
mentation, and thus in this paper we investigate weak optimality,

that is, the evaluation strategies that are optimal in the restricted-,
weak-reduction space.

The main contributions are the following:

• We adapt Lévy’s theory of optimal evaluation to the weak
λ-calculus (Section 4), and identify two strategies that reach
optimality (Section 6). One of these weakly optimal strategies
is the original call-by-need, which proves the good behavior
of Wadsworth’s technique. The second weakly optimal strategy
does not use sharing at all, which proves that the new reduction
sequences allowed by sharing are not shorter than the shortest
single-step reduction sequences.
• We prove that optimal single-step reduction strategies cannot

be computable (Section 3). This result completes the previous
statement by showing that, while sharing does not enable strictly
shorter reduction sequences, call-by-need nevertheless offers a
computable way of reaching weak optimality.
• We use a labelling of the weak λ-calculus as a simple way to

give a faithful account of all the causal dependencies between
computation events (Section 4).
• We show that the weak λ-calculus, while it has the appearance

of the λ-calculus, has the properties of a first-order rewriting
system (Section 5).

Since it is a better fit for a conference format, we focus here on
the case of the weak λ-calculus. However, the results of the paper
hold for the more general case of weak reduction in orthogonal
higher-order rewriting. The interested reader is referred to the
author’s doctoral dissertation [Bal12b].

2. The weak λ-calculus
In this section we recall the definitions and the basic properties
of the weak λ-calculus. As in the previous paper [Bal12c], the λ-
calculus is expressed in the higher-order rewriting framework of
Combinatory Reduction Systems (CRS). This may seem artificial at
the beginning, but it will allow a clean handling of the labels and of
the connection between weak reduction and first-order rewriting.

First, let us introduce the CRS in a nutshell. We see here only the
basic syntax and mechanisms; a comprehensive presentation can be
found in [KvOvR93].

Definition 2.1 (Combinatory Reduction Systems / CRS). The gram-
mar of metaterms in a CRS is:

t ::= x | [x]t | f(t1, ..., tn) | Z(t1, ..., tn)

where x is a variable, [x] denotes the binding of a variable, f is an
n-ary function symbol taken in a signature S, and Z is an n-ary
metavariable.

A term is a metaterm without metavariable, and an n-ary
context is a term that contains n occurrences of the special nullary
symbol � (the hole). A reduction rule is a pair L → R of closed
metaterms satisfying the following conditions:

• the metavariables in L appear as Z(x1, ..., xn) with x1, ..., xn
distinct bound variables; and
• all the metavariables of R also appear in L.

A rule matches a term by application of a valuation σ that maps
n-ary metavariables to n-ary contexts avoiding variable capture.
Reduction by a rule L → R with valuation σ in a context c is
c[Lσ]→ c[Rσ].

Example 2.2.
The λ-calculus can be seen as a CRS with:

• a signature Sλ = {λ,@} where the symbol λ is unary and the
application symbol @ is binary;

• a unique reduction rule @(λ([x]Z(x)), Z′)→ Z(Z′).

The λ-term (λx.x)y is encoded in the CRS term @(λ([x]x), y).
However, we will still use usual λ-calculus notation wherever this
can lighten the presentation.

Example 2.3.
First order rewriting systems, also called Term Rewriting Systems
(TRS) are also a particular case of CRS, where metaterms do not
contain any binders.

The absence of binders has some consequences. In particular,
since any metavariable Z appearing in the left member L of a
reduction rule L → R is supposed to appear as Z(x1, . . . , xn)
where the xi’s are bound variables, we are restricted to nullary
metavariables that appear simply as Z. This restricts a lot the
reduction rules that can be defined, and explains the simpler
behavior of first-order compared to higher-order rewriting.

In this paper we will consider a signature that strictly contains
the one of the λ-calculus.

Definition 2.4 (Terms). From now on we consider the signature

S = {ε, λ,@} ∪ F
where:

• ε is a unary symbol called dummy symbol, and
• F =

⋃
n∈N Fn where for all n, Fn is a countable set of n-ary

symbols called supercombinators.

From now on, by term we mean a CRS term over the signature S.
Write Λ for the set of terms. We use the usual notion of position
in a term. Write t|p for the subterm of t rooted at position p, and
call two positions p1 and p2 disjoint if none is a prefix of the other.
We also use the usual notion of free variables. Write t{x:=u} for
the substitution by u of all the free occurrences of the variable
x in t. Write dom(σ) for the domain of a n-ary substitution σ. A
context is a term also containing the nullary symbol �, called hole.
Replacement c[t] of a hole in a context c by a term t is as usual.

The supercombinator symbols in the sets Fn are used in Sec-
tion 5 for the reduction of the weak λ-calculus to a first-order rewrit-
ing system. Until then they play no role and may be safely ignored.

The dummy symbol ε has no meaning in itself. It is needed
for the causal interpretation of labels (Section 4.5), and serves
in particular as a container for dynamically created labels. As a
consequence, occurrences of ε should not interfere with β-reduction.
This leads to the following countable set of rules to simulate β-
reduction by allowing any number of ε’s between the application
and the λ-abstraction.

Definition 2.5 (Beta-reduction). The rules for β-reduction are as
follows:

β0: @(λx.Z(x), Z′) →β ε(Z(Z′))
β1: @(ε(λx.Z(x)), Z′) →β ε(Z(Z′))
β2: @(ε(ε(λx.Z(x))), Z′) →β ε(Z(Z′))
...

Write ρ : t→ t′ a reduction step ρ from a term t to a term t′. Write
src(ρ) = t for the source of ρ, tgt(ρ) = t′ for its target, and
root(ρ) for the position in src(ρ) of the redex reduced by ρ. A
normal form is a term that is the source of no reduction step. The
usual notions of ancestors and descendants [Ter03], which track
subterms along reduction in the λ-calculus are straightforwardly
adapted1, as illustrated in Example 2.6. A residual of a redex r is a

1 The book [Ter03] gives several definitions of descendants that differ in
particular in how they treat variables. In this paper we only need to consider
the descendants of applications, hence the simplest definition is enough.

descendant of r which is still a redex. A redex r in the target tgt(ρ)
of a reduction step ρ is created by ρ if it is not a residual of a redex
in the source src(ρ). A development of a set of redexes R in a
term t is a reduction sequence % : t� t′ where each step reduces
a residual of a redex inR. A development % is complete if there is
no remaining residual of any redex in R. A redex r in a term t is
needed if any reduction sequence from t to a normal form reduces
at least one residual of r.

The ε’s in the right hand sides of the β-rules are used for the
correct labelling of collapsing reductions (Section 4.5). The use of
the dummy symbol ε is inspired by the notion of expansion in term
rewriting systems [Ter03, Chap. 8].

Example 2.6.
The rule β1 enables a reduction step

ρ : @(ε(λx.@(x, x)), y) → ε(@(y, y))

The two occurrences of y in the target are the descendants of the y
in the source, and the latter is the ancestor of the formers. The ε in
the source has no descendant and the ε in the target has no ancestor.

In the usual, non-weak λ-calculus, β-reduction can be applied
in any context. In contrast, the weak λ-calculus introduces some
restrictions on the contexts in which a reduction rule can be applied.
Intuitively, reduction will be forbidden at any position (called
frozen) that belongs to the “effective scope” of a binder, which
we call skeleton. This restriction is formally based on the following
definitions.

Definition 2.7 (Free expression). A free expression2 of a λ-term
λx.t is a subterm s of t such that any free variable occurrence in
s is also free in λx.t. A free expression is maximal if it is not a
subterm of another free expression.

Definition 2.8 (Prefix). A n-ary prefix of a λ-term t is a n-
ary context c such that there are n λ-terms t1, . . . , tn satisfying
t = c[t1, . . . , tn].

We will be mostly interested in the prefix that is obtained by
removing all the maximal free expressions of a λ-abstraction λx.t,
which represents the parts of the term that are not independent from
the binder, and which we call skeleton of λx.t. Example 2.9 illus-
trates this notion, and definition 2.10 then gives a direct definition.

Example 2.9.
Suppose w1 and w2 are two variables, and consider the λ-term

t = λx.(λy.y)(λz.z(w1w2)x)

Its maximal free expressions are λy.y and w1w2, while its skeleton
is the binary prefix

λx.�(λz.z�x)

The skeleton is marked with bold lines in the following picture.

λx

@

λy

y

λz

@
x@

z @
w1 w2

Definition 2.10 (Skeleton). For any set of variables θ, call θ-
skeleton of a λ-term t and write 〈〈t〉〉θ for the prefix of t defined as

2 Originally called abstractable expression by Wadsworth.

follows:

〈〈t〉〉θ = � θ ∩ fv(t) = ∅
Otherwise:

〈〈x〉〉θ = x x ∈ θ
〈〈ε(t)〉〉θ = ε(〈〈t〉〉θ)
〈〈λx.t〉〉θ = λx.〈〈t〉〉θ∪{x}
〈〈t1t2〉〉θ = 〈〈t1〉〉θ〈〈t2〉〉θ

〈〈f(t1, . . . , tn)〉〉θ = f(〈〈t1〉〉θ, . . . , 〈〈tn〉〉θ)

Call skeleton of a λ-abstraction λx.t its prefix λx.〈〈t〉〉{x}. Write
〈〈Λ〉〉 for the set of all skeletons.

Definition 2.11 (Frozen positions). A position p of a λ-term t is
called frozen if it is contained in the skeleton of a λ-abstraction of
t. Call a frozen redex any β-redex whose main @ symbol (the root
of the redex) occurs at a frozen position.

Definition 2.12 (Weak β-reduction). Weak β-reduction is defined
by the application of the β-reduction rules to any β-redex that is not
frozen.

From now on we call redex only a non-frozen redex, that is
a redex for weak reduction. A weak normal form is a term that
contains no (non-frozen) redex.

Example 2.13.
Let a be a fresh variable. Consider the λ-term

t = λx.@(λy.y,@(x,@(λz.z, a)))

Its frozen positions are ε, 1, 12, and 121 (corresponding to
λx, x, and the two applications in between). Hence the redex
@(λy.y,@(x,@(λz.z, a))) is frozen, while the redex @(λz.z, a)
is not. The weak normal form of t is λx.@(λy.y,@(x, a)).

This notion of weak β-reduction first appeared in works by
Howard [How70] and by Çagman and Hindley [cH98], as a mean to
describe in the syntax of the λ-calculus the reduction behavior of the
combinators S and K of Combinatory Logic. For this reason it has
been called combinatory weak reduction. In this setting, Çagman
and Hindley proved in particular that the weak λ-calculus had the
Church-Rosser property.

Proposition 2.14 (Church-Rosser, Çagman and Hindley [cH98]).
The weak λ-calculus is confluent.

3. (Un-)Computability
In this section we prove the Uncomputability Theorem 3.14, which
states that any optimal strategy for the weak λ-calculus, that is any
reduction strategy that selects a shortest weak reduction sequence
for any λ-term, is necessarily uncomputable. A similar result has
already been proved by Barendregt et al. for the usual non-weak
λ-calculus [BBKV76]. However, a key step of their proof does not
hold if we restrict ourselves to weak reduction. In Section 3.1 we
review the structure of the proof of Barendregt et al. and show where
it gets broken by weak reduction. Then in Section 3.2 we patch their
proof thanks to an original use of the λ-lifting transformation.

In this whole section we ignore the dummy symbol ε and the
supercombinator symbols in F .

3.1 Barendregt et al.’s proof of uncomputability
The proof by Barendregt et al. proceeds by exhibiting two recursively
inseparable sets of λ-terms A and B3 and by showing how to
separate them using a hypothetical optimal reduction strategy. The
set A (resp. B) is defined as “the set of all λ-terms admitting some

3A and B are recursively inseparable if there is no recursive set C such
thatA ⊂ C and B ∩ C = ∅.

cleverly-chosen ta (resp. tb) as normal form”, and these two sets A
and B are known to be recursively inseparable thanks to a result by
Scott [Sco68].

The two setsA and B are then separated using a total computable
function ϕ(.) on λ-terms such that:

• Each ϕ(t) contains exactly two β-redexes, written rat and rbt .
• From ϕ(t), any optimal reduction strategy reduces rat if t� ta,

and rbt if t� tb (and nothing is specified if t reduces neither to
ta nor to tb).

Their first step in defining the λ-term ϕ(t) is to build an
enumerator, that is a λ-term e in normal form such that, if nt is
a Gödel number for a λ-term t, and if pntq is a representation in
the λ-calculus of nt, then epntq � t. This enumerator e works
by building applicative combinations of the standard S, K, and
I combinators. In particular epntq reduces to (t)CL, the usual
encoding of t in combinatory logics S, K, I . Then, after reverting
all the combinators into λ-terms, which gives a λ-term ((t)CL)λ, it
is folklore that ((t)CL)λ � t.

However, the latter is not true anymore in the weak λ-calculus,
as the following example shows.

Example 3.1.
Consider the λ-term

t = λx.xx

Then we have

(t)CL = SII
((t)CL)λ = (λxyz.xz(yz))(λx.x)(λx.x)

and ((t)CL)λ � t in the non-weak λ-calculus. However, the weak
normal form of ((t)CL)λ is

λz.((λx.x)z)((λx.x)z)

Hence we do not have ((t)CL)λ � t in the weak λ-calculus.

The next section provides a new function ϕ(.) that is suited for
use with the weak λ-calculus.

3.2 Uncomputability for the weak λ-calculus
First, let us state that Scott’s inseparability result is still valid for the
weak λ-calculus.

Proposition 3.2 (Inseparability, Scott [Sco68]). LetA andB be two
non-empty sets of λ-terms that are closed under weak β-reduction.
Then A and B are recursively inseparable.

Proof. Similar to Barendregt’s proof [Bar84, Chap. 6], that does not
need non-weak β-reduction.

The main mechanism of our function ϕ(.) is a decomposition of
a λ-term into several components, all of which are in weak normal
form. We rely on the fact that any skeleton is a normal form for
weak reduction (all the positions of a skeleton are indeed frozen),
and we use a technique inspired by λ-lifting to represent a λ-term
as an assembly of skeletons.

The first step, corresponding to what Danvy and Schultz call
“parameter lifting” [DS00], makes each λ-abstraction closed by
extracting its maximal free expressions4.

4 Note that ordinary λ-lifting extracts only the free variables; switching to
free expressions corresponds to fully lazy λ-lifting [PJ87].

Definition 3.3 (Free Expressions Lifting (fel)).

fel(x) = x
fel(t1t2) = fel(t1)fel(t2)
fel(λx.t) = (λy1. . . ynx.s[y1, . . . , yn])fel(t1). . .fel(tn)

s = 〈〈t〉〉{x}
t = s[t1, . . . , tn]

y1, . . . , yn fresh variables

Lemma 3.4 (Free expressions lifting). For any λ-term t we have
fel(t)� t.

Proof. By induction on t.

Example 3.5.
Suppose a, b and c are three free variables and consider the term

t = λx1.((λx2.x2a)b)(x1c)

Then free expression lifting proceeds as follows:

fel(t) = (λy1y2x1.y1(x1y2))fel((λx2.x2a)b)fel(c)
= (λy1y2x1.y1(x1y2))(fel(λx2.x2a)fel(b))fel(c)
= (λy1y2x1.y1(x1y2))((λy′1x2.x2y

′
1)fel(a)fel(b))fel(c)

= (λy1y2x1.y1(x1y2))((λy′1x2.x2y
′
1)ab)c

Moreover, we have fel(t)� t in three weak reduction steps.

The second step, corresponding to what Danvy and Schultz call
“block floating”, moves each function to toplevel. This is done by
replacing each skeleton by a fresh variable and mapping these new
variables to the skeletons they denote.

Definition 3.6 (Skeletons Floating (sf)).

sf(x) = (x, ∅)
sf(t1t2) = (u1u2, σ1] σ2)

∀i ∈ {1, 2}, sf(ti) = (ui, σi)

sf(λx.t) = (z, {z := λx.t}) z fresh

where] is the union of two substitutions with disjoint domains.

Lemma 3.7 (Skeletons floating). Let t be a λ-term and p a position.
Write sf(t) = (u, σ). Then uσ = t.

Proof. By induction on t.

Example 3.8.
Consider the term fel(t) obtained at the end of example 3.5.
Skeletons floating sf(fel(t)) yields the term

u = z1(z2ab)c

and the substitution
σ = { z1 := λy1y2x1.y1(x1y2) ;

z2 := λy′1x2.x2y
′
1 }

such as uσ = fel(t).

Finally, the result of the two previous steps allows us to decom-
pose a λ-term t as an application s0s1. . . sn with n ≥ 1 and where
each si is a weak normal form.

Definition 3.9 (Decomposition). Let t be a λ-term. Write

sf(fel(t)) = (u, σ)

• If dom(σ) = ∅, then define

dec(t) = (λz.u)I

• Otherwise write dom(σ) = {z1, . . . , zn}, and define

dec(t) = (λz1. . . zn.u)σ(z1). . . σ(zn)

Lemma 3.10 (Decomposition). For any λ-term twe have dec(t)�
t.

Proof. By case on whether skeletons floating yields an empty
substitution or not.

Definition 3.11 (Separating function). The separating function
ϕ(.) is defined as follows: let t be a λ-term; write dec(t) =
s0s1...sn; then

ϕ(t) = (λx.xs0x)(λy.ys1. . . sn(II))

where I = λz.z is the identity.

Example 3.12.
Consider the term t from example 3.5. Its decomposition is

dec(t) = (λz1z2.z1(z2ab)c)
(λy1y2x1.y1(x1y2))
(λy′1x2.x2y

′
1)

where each of the three components is a weak normal form, and
where we can check that dec(t) � t in five weak reduction steps.
Finally we define

ϕ(t) = (λx.x(λz1z2.z1(z2ab)c)x)
(λy.y(λy1y2x1.y1(x1y2))(λy′1x2.x2y

′
1)(II))

Lemma 3.13 (Separation). Consider an optimal strategy
opt−−→ for

the weak λ-calculus, and let s0, s1, . . . , sn be λ-terms in weak
normal form. Write u = (λx.xs0x)(λy.ys1. . . sn(II)), where
I = λz.z is the identity. Then the following holds:

• If s0s1. . . sn � λxyz.z

then u
opt−−→ (λy.ys1. . . sn(II))s0(λy.ys1. . . sn(II))

• If s0s1. . . sn � a

then u
opt−−→ (λx.xs0x)(λy.ys1. . . snI)

Proof. Similar to Barendregt’s [Bar84, Lemma 13.5.5].

Now we are able to prove the Uncomputability Theorem 3.14.

Theorem 3.14 (Uncomputability). There is no computable optimal
reduction strategy for the weak λ-calculus.

Proof. Define A = {t ∈ Λ | t� λxyz.z} and B = {t ∈ Λ | t�
a}. Both sets are closed by weak β-reduction, hence by Scott’s
Inseparability Proposition 3.2 the sets A and B are recursively
inseparable.

Now suppose there is a recursive optimal strategy
opt−−→ for the

weak λ-calculus. Then the set

C = {t ∈ Λ | ϕ(t)
opt−−→ t′ at position ε}

is computable. And yet, by Separation Lemma 3.13 the set C
separates A and B. Contradiction.

Finally, we have proved that optimal reduction strategies for the
weak λ-calculus cannot be computable. In the following sections
we will investigate other approaches to optimality, in particular by
using sharing.

4. Weak optimality
In this section we adapt Vuillemin-Lévy’s theory of optimal-
ity [Lé80] to the weak λ-calculus, which will give a characteri-
zation of optimal reduction in a setting in which some sharing of
computation is allowed.

4.1 A short introduction to Vuillemin-Lévy’s optimality
This approach is intended to give a lower bound on the number of
evaluation steps needed for normalizing a term, by characterizing
an ideal case in which there is no unneeded computation step
and no duplication at all. Since such an ideal reduction sequence
cannot be reached in the pure λ-calculus –it is either non-existing
or non-computable– this characterization of optimality proceeds
by identifying families of computation steps that regroup all the
duplicates of a given original redex. Hence, the families describe
which redexes should be shared in order to achieve a computation
without duplication.

The main idea behind families is the following: consider a
reduction sequence % : t1 → t2 → . . . → tn and two redexes
r1 and r2 in tn. If there is a redex r0 in one of the ti’s that is
a common ancestor to r1 and r2, then r1 and r2 are in the same
family (they are two duplicate copies of the original r0). Hence two
redexes are in the same family if their duplication could have been
avoided by first reducing a common ancestor.

Example 4.1.
In this reduction sequence we follow the underlined expression
(λz.z)(λw.w).

(λx.xx)(λy.((λz.z)(λw.w)y))

→ (λy.((λz.z)(λw.w)y))(λy.((λz.z)(λw.w)y))

→ (λz.z)(λw.w)(λy.((λz.z)(λw.w)y))

The two occurrences of (λz.z)(λw.w) are residuals of the first
occurrences; they are in the same family.

However, this criterion is not enough: two redexes can be in
the same family even if their common ancestor is not visible in the
sequence %.

Example 4.2.
Now reduce the two underlined occurrences in the last term of
example 4.1. We observe two new redexes (underlined below) that
have no visible ancestor, and therefore no visible common ancestor.

(λw.w)(λy.(λw.w)y)

Such a common ancestor exists somewhere though. Consider this
other possible evaluation sequence and follow the underlined terms.

(λx.xx)(λy.((λz.z)(λw.w)y))

→ (λx.xx)(λy.((λw.w)y))

→ (λy.((λw.w)y))(λy.((λw.w)y))

→ (λw.w)(λy.(λw.w)y)

Hence, by permuting the original sequence we have found a common
ancestor to the two underlined redexes, which are thus in the same
family. Reducing them both finally yields the term

λy.y

Hence, the definition of families requires to reason globally
on the reduction spaces and the permutations of their steps. To
circumvent this problem, Lévy also gave a direct characterization
of families, through a labelled λ-calculus that is shown to be stable
by permutation of reduction steps. With this additional tool, the
labels directly tell which redexes should be reduced in a shared way.
Unfortunately the definition does not give an implementation. One
of the difficulties is that optimal sharing in the λ-calculus requires
sharing contexts (as the context (λw.w)� in the previous example).
The first algorithms realizing optimal sharing in the non-weak λ-
calculus were found ten years later [Lam90].

In this section we characterize families and optimality for the
weak λ-calculus. We use an abstract characterization of Vuillemin-

Lévy optimality that has been proposed by Glauert and Khasi-
dashvili.

4.2 Glauert & Khasidashvili’s Deterministic Family
Structures

Glauert and Khasidashvili [GK96] propose an abstract framework
for characterizing optimality that is composed by two layers:

1. a well-behaved notion of residual (so-called Deterministic Resid-
ual Structure or DRS); and

2. a notion of family built above the notion of residual and enjoy-
ing additional good properties (so-called Deterministic Family
Structure, or DFS).

Deterministic Residual Structures are defined by only two ax-
ioms, which are usually satisfied by the natural notions of residual
in λ-calculus-based systems.

Definition 4.3 (Deterministic Residual Structure, DRS [GK96]).
A Deterministic Residual Structure (DRS) is a rewriting system
equipped with a residual relation satisfying the following properties:

• [FD] All developments are terminating; all complete develop-
ments of a given set of redexes have the same target; all complete
developments of a given set of redexes define the same residuals.
• [Acyclicity] Let r and re be two distinct redexes of a term t such

that r erases5 re. Then re does not erase r.

The definition of Deterministic Family Structures is more com-
plex. First, since the families of redexes in a term t are linked to the
history of t –that is to [the permutations of] a reduction sequence of
which t is the target– this definition considers families of reduction
steps with history.

Definition 4.4 (Reduction step with history). A reduction step
with history is a pair (%, ρ) where % is a reduction sequence, ρ is
a reduction step, and tgt(%) = src(ρ). Two reduction steps with
history (%1, ρ1) and (%2, ρ2) are coinitial if src(%1) = src(%2).

Second, we need to include the notions of residual and of
permutation in the definition of families. For this they define a
notion of copy, which has to be understood as a residual relation
modulo permutation.

Definition 4.5 (Copy). Let (%1, ρ1) and (%2, ρ2) be two coinitial
reduction steps with history. Suppose %1 has no residual after %2

6.
Let %2/%1 be a complete development of the residuals of %2 after
%1. If ρ2 is a residual of ρ1 after %2/%1, then (%2, ρ2) is said to be
a copy of (%1, ρ1), written (%1, ρ1)B (%2, ρ2).

Definition 4.6 (Deterministic Family Structure [GK96]). LetR be a
DRS. Let' be an equivalence relation over coinitial reduction steps
with history, whose equivalence classes are called families. Write
Fam(%, ρ) for the family (ie the equivalence class) of a reduction step
with history (%, ρ). Let ↪→ be a binary relation over families, called
contribution relation. The triple (R,', ↪→) is a Deterministic
Family Structure (DFS) if the following axioms are satisfied:

• [Initial] For any coinitial distinct reduction steps ρ1 and ρ2 we
have Fam(∅, ρ1) 6= Fam(∅, ρ2).
• [Copy] B ⊆ '.
• [FFD] Any reduction sequence that contracts redexes of a finite

number of families is finite.
• [Creation] For any reduction step with history (%, ρ), if ρ

creates a reduction step ρ′ then Fam(%, ρ) ↪→ Fam(%ρ, ρ′).

5 r erases re means that re has no residual after the reduction of r.
6 This means that any “task” of %1 is either completed or erased by %2.

• [Contribution] For any two families φ1 and φ2, we have
φ1 ↪→ φ2 if and only if for any reduction step with history
(%2, ρ2) ∈ φ2 there is a reduction step with history (%1, ρ1) ∈
φ1 such that %1ρ1 is a prefix of %2.

Definition 4.7 (Family reduction). In a DFS, a family reduction
step is a complete development of a set R of redexes of a term t
which all belong to a given family φ. It is complete if R contains
all the redexes of t that belong to the family φ. It is needed if one of
the redexes ofR is needed.

Family reduction gives a new, richer reduction space in which
shared evaluation is possible. From now on, we are interested in
optimality in this bigger reduction space, that is in optimality with
sharing.

Proposition 4.8 (Optimality in DFS [GK96]). In any DFS, a family
reduction sequence that reduces only complete needed families is
optimal.

Our goal for the rest of the section is to build a DFS over the
weak λ-calculus, in order to characterize weak optimality. That
means we need to give a concrete definition of the abstract concept
of family and to prove that all the axioms are satisfied. Here is a
summary of the required ingredients:

• we need to exhibit concrete notions of family (') and of
contribution (↪→); following Lévy, we will do this through a
labelling of the weak λ-calculus presented in Section 4.4;
• in Section 4.3 we derive a classification of redex creations that

both guide the definition of labels and enables the proof of the
[Creation] axiom; and
• in Section 4.5 we show that the labels give a faithful account of

the causal dependencies between reduction steps, which will be
the core of the proof of the [Contribution] axiom.

The proof of the finite development axioms [FD] and [FFD] is
postponed to Section 5, where we establish a connection between the
weak labelled λ-calculus and a first-order rewriting system, which
allows us to re-use finite development results from the first-order
rewriting literature.

4.3 Redex creation in the weak λ-calculus
In this subsection we do not use the dummy symbol ε yet.

In the λ-calculus, a redex is a connection between a λ-abstraction
and an argument. Hence a redex is created each time a new connec-
tion of this kind appears.

Example 4.9.
The three reduction steps below show the three ways of connecting
a λ-abstraction λx.t to an argument u described by Lévy [Lé78].

((λy.λx.t)v)u → (λx.t{y := v})u
((λy.y)λx.t)u → (λx.t)u

(λy.yu)λx.t → (λx.t)u

These examples are valid independently of the restriction to weak
reduction.

In the weak λ-calculus there is a new creation case, which can
be observed when a frozen redex gets unfrozen.

Example 4.10.
In the source of the following reduction step, the expression
(λx.yx)u is not a redex because it is frozen by the variable y.

(λy.((λx.yx)u))t → (λx.tx)u

For the rest of this paper, it is enough to classify the redex
creations in two categories: either the left part of an application

evaluates to a λ-abstraction, or an application subterm is affected by
a substitution. This classification is formalized by Redex creation
Theorem 4.12. We begin with a lemma that considers the case of a
redex creation at the root of a term.

Lemma 4.11 (Root redex creation). Let ρ : t = c[r]→ c[r′] = t′

be a reduction step with r = (λx.u)v and r′ = u{x := v}. Suppose
c 6= � and t′ is a redex rc = (λy.uc)vc that is created by ρ. Then
the following holds:

(1) c = �vc and r′ = λy.uc.

Proof. Case analysis on c 6= �:

• Case c = λz.c′, or c = f(t1, . . . , c
′, . . . , tn). Then there exists

u′ such that t′ = λz.u′ (resp. t′ = f(t1, . . . , u
′, . . . , tn)).

Contradiction with the hypothesis that t′ is a redex.
• Case c = (λy.uc)c

′. Then the ancestor t of rc is already a redex.
Contradiction with the hypothesis that the redex rc is created by
ρ.
• Case c = c′vc. Case analysis on c′:

Case c′ = �. Then c = �vc and r′ = λy.uc. Hence
proposition (1) holds.
Case c′ = t1c

′′ or c′′t2. Then c = t1c
′′vc or c = c′′t2vc,

and there exists a pair t′1, t′2 such that t′ = t′1t
′
2vc. Contra-

diction with the hypothesis that t′ is a redex.
Case c′ = f(t1, . . . , c

′′, . . . , tn) is similar.
Case c′ = λy.c′′. Then c = (λy.c′′)vc, and the ancestor t
of rc is already a redex. Contradiction with the hypothesis
that the redex rc is created by ρ.

Theorem 4.12 (Redex creation). Let ρ : t = c[r] → c[r′] = t′

be a reduction step with r = (λx.u)v and r′ = u{x := v}. Let
rc = (λy.uc)vc be a redex in t′ that is created by ρ. Write
t′ = cc[rc]. Then one of the following holds:

(1) c = cc[�vc] and r′ = λy.uc.
(2) The position root(rc) is a descendant of a position of the x-

skeleton of u.

Proof. Case analysis on the relative positions root(r′) and root(rc).

• If root(r′) and root(rc) are disjoint, then the redex rc already
exists in t. Contradiction with the hypothesis that the redex rc is
created by ρ.
• If root(rc) is a prefix of root(r′), then there is a c′ such that
rc = c′[r′] and t′ = cc[c

′[r′]]. Since rc is created by ρ, its
ancestor c′[r] is not a redex in t = cc[c

′[r]]. Suppose c′[r] is
a frozen redex. Then in c′[r] there is a free occurrence of a
variable x that is bound in cc. Case analysis on the position of
this variable occurrence:

If x appears in r, then r is a frozen redex. Contradiction with
the hypothesis that the redex r is reduced.
If x appears in c′, then rc = c′[r′] still contains x and rc is
a frozen redex. Contradiction with the hypothesis that rc is a
redex.

Hence c′[r] is not a frozen redex, and we can apply Root redex
creation Lemma 4.11 to the step c′[r]→ c′[r′] to conclude.
• If root(r′) is a prefix of root(rc), then rc is a subterm of
r′ = u{x := v}, and there are three cases to consider:

If rc is in a substituted occurrence of v, then its ancestor is
already a redex. Contradiction with the hypothesis that the
redex rc is created by ρ.
If root(rc) is in the x-skeleton of u but is not the position
of an occurrence of x, then proposition (2) holds.

If root(rc) is in u but not in the x-skeleton of u, then
the ancestor of rc is equal to rc and is already a redex.
Contradiction with the hypothesis that the redex rc is created
by ρ.

4.4 Weak labelled λ-calculus
From now on we use the full signature S.

The classification of redex creations 4.12 will guide the definition
of the labels following a simple principle: the labels have to record
all possible redex creations. More precisely, each redex r (and by
extension each reduction step ρ) is given a name that contains all
the information relevant to the creation of r. Thus we expect at least
two things:

• If a redex r is created by a reduction step ρ, then the name of ρ
should influence the name of r in some way.
• Once a redex is created, its name never changes.

These two properties are formalized in Direct contribution Lemma 4.21
and Residuals Lemma 4.22. These properties will allow us to use
the labels to define Lévy-style redex families.

A label is either an atomic label (here a position for technical
convenience) or a combination [Ω, α] of a name Ω and a label α. A
name is a sequence of labels obtained by collecting the individual
labels of the meaningful positions of the corresponding redex. Most
of these definitions are taken from the previous paper [Bal12c]; the
obtained system is a slight simplification of a labelling presented by
Blanc, Lévy and Maranget [BLM07].

Definition 4.13 (Labels). The set L of labels and the set N of
redex names are defined by the following grammar:

Labels L α ::= p | [Ω, α] p position
Names N Ω ::= α1. . . αn n ≥ 2

The labelled signature SL is defined as

SL = {fα | f ∈ S, α ∈ L}
where arities are preserved. Let (.)• be the forgetful morphism that
maps terms over SL to terms over S by removing their labels. For
any term t over SL and any position p ∈ pos(t), write τp(t) for
the label of t at position p. In this section, call initial a term over
SL whose labels are all atomic (that is, a position) and different.

The contribution relation is a straightforward containment rela-
tion on the labels. The strength of this simple syntactic notion is
that it is equivalent to a more semantic notion of causal dependency
between reduction steps, which we will prove in Section 4.5.

Definition 4.14 (Contribution). The direct contribution relation
↪→dc is defined on names by the following criterion: Ω ↪→dc

Ω1[Ω, α]Ω2 for any name Ω, any possibly empty names Ω1, Ω2,
and any label α. The contribution relation ↪→c is the transitive
closure of ↪→dc.

Definition 4.15 (Name of a redex). A labelled redex is a term over
SL of the form

r = @ω(εα1(. . . εαn(λγx.t)), u)

Its name is the sequence

name(r) = ωα1. . . αnγ

Labelled β-reduction introduces the name of the reduced redex at
all the places identified by Redex creation Theorem 4.12 as possibly
related to a redex creation: the labels of the skeleton are modified,
and a new label is created at the root of the reduced redex.

Definition 4.16 (Uniform relabelling). For any labelled n-ary
context c and any label Ω, the uniform relabelling [Ω, c] of c by

Ω is defined by the following equations:

[Ω,�] = �

[Ω, x] = x

[Ω, εα(c)] = ε[Ω,α](c)

[Ω, λαx.c] = λ[Ω,α]x.[Ω, c]

[Ω,@α(c1, c2)] = @[Ω,α]([Ω, c1], [Ω, c2])

[Ω, fα(c1, . . . , cn)] = f [Ω,α]([Ω, c1], . . . , [Ω, cn])

Definition 4.17 (Labelled β-reduction). Labelled β-reduction is
defined by the following rule scheme:

@ω(εα1(. . . εαn(λγx.s[Z1, . . . , Zn])), Z)
→β

[ωα1. . . αnγ, ε
ε(s)]{x :=Z}[Z1, . . . , Zn]

where s is a {x}-skeleton.

Example 4.18.
In this example we work on a labelling of the ordinary λ-term
((λx.xa)(λy.y))b. Consider the labelled term

t = @α(@β(εγ(λδx.@η(ει(x), εν(a))), λµy.y), εκ(b))

The term t contains a labelled redex

r = @β(εγ(λδx.@η(ει(x), εν(a))), λµy.y)

with name Ω = βγδ. The skeleton of the λ-abstraction of r is

λδx.@η(ει(x),�)

This skeleton is the only part whose labels are modified by labelled
β-reduction. Hence

t → @α(ε[βγδ,ε](@[βγδ,η](ε[βγδ,ι](λµy.y), εν(a))), εκ(b))

In the target of this reduction step, a labelled redex

rc = @[βγδ,η](ε[βγδ,ι](λµy.y), εν(a))

with name Ωc = [βγδ, η][βγδ, ι]µ such that Ω ↪→dc Ωc.

Finally, we define a notion of parallel labelled reduction that is
meant to represent shared evaluation.

Definition 4.19 (Parallel reduction). Write ρ̄ : t⇒ t′ if there exists
a name Ω and a complete development % : t� t′ of all the labelled
β-redexes in t of name Ω.

4.5 Causality
In this section we show that the labels give a faithful account of
causality in our system. Causal soundness Lemma 4.26 and Causal
completeness Lemma 4.28 show that the set N of the names that
contribute to a given redex name Ω is exactly the set of the names
of the reduction steps that are needed to create a redex of name Ω
from an initial term.

We formalize this fact using the following notion of needed
names, which extends the notion of needed redexes.

Definition 4.20 (Needed name). A name Ω1 is said to be needed
for a name Ω2, written Ω1 ↪→n Ω2, if every reduction sequence %ρ2

with src(%ρ2) initial and name(ρ2) = Ω2 is such that % contains a
reduction step of name Ω1.

This subsection is devoted to the proof that the semantic notion of
neededness ↪→n is equivalent to the syntactic notion of contribution
↪→c (Causality Theorem 4.29). We begin with three lemmas that are
not new, but that are useful to derive stronger causality properties.

Lemma 4.21 (Direct contribution). For any reduction step ρ : t→
t′ of name Ω, if ρc is a reduction step from t′ of name Ωc that is
created by ρ, then Ω ↪→dc Ωc.

Proof. By a case analysis on the creation of ρc, guided by Redex
creation Theorem 4.12.

Lemma 4.22 (Residuals). For any reduction step ρ : t→ t′, if ρa
is a reduction step from t of name Ω, then any descendant in t′ of
root(ρa) is the root of a redex with same name Ω.

Proof. Similar to the proof given by Blanc, Lévy, and Maranget [BLM07].
The main point is that a non-frozen redex cannot be relabelled.

Lemma 4.23 (Finite developments). Let t be a labelled λ-term and
R a set of reduction steps from t. Then the three following hold:

• All the developments ofR are finite.
• All the complete developments ofR have the same target.
• All the complete developments ofR define the same descendants

and residuals.

Proof. Deduced from finite developments for orthogonal TRS once
the results from Section 5 are established.

Causal soundness is the inclusion of ↪→c in ↪→n. It is proved by
tracking the origins of the labels and by checking that the labels do
not record spurious contributions.

Lemma 4.24 (Reversed direct contribution). Let % be a reduction
sequence from an initial term. If the target of % contains a label of
the form [Ω, α], then the sequence % contains a reduction step of
name Ω.

Proof. By induction on the length of %, remarking that, at each step,
any label [Ω, α] is created or descends from an identical label.

Lemma 4.25 (Direct neededness). Let % be a reduction sequence
from an initial term. Let ρ be a reduction step from t = tgt(%) and
name Ω. If Ω′ is a name such that Ω′ ↪→dc Ω, then % contains a
reduction step of name Ω′.

Proof. Write Ω = ω1. . . ωn. By definition there exists i such that
ωi = [Ω′, α]. By definition of the name of a redex, there exists a
position p ∈ pos(t) such that τp(t) = [Ω′, α] for some label α.
Then by Lemma 4.24 the reduction sequence % contains a reduction
step of name Ω′.

Lemma 4.26 (Causal soundness). Let Ω1 and Ω2 be two names
such that Ω1 ↪→c Ω2. Then Ω1 ↪→n Ω2.

Proof. By induction on the length of a shortest sequence Ω1 ↪→dc

. . . ↪→dc Ω2.

• If Ω1 ↪→dc Ω2, then by Direct neededness Lemma 4.25 any
reduction sequence from an initial term to a term containing of
redex of name Ω2 contains a reduction step of name Ω1, which
means that Ω1 ↪→n Ω2.
• If Ω1 ↪→dc Ω3 ↪→c Ω2 and Ω3 ↪→n Ω2, then similarly

Ω1 ↪→n Ω3 and by transitivity of neededness Ω1 ↪→n Ω2.

Causal completeness is the inclusion of ↪→n in ↪→c. It is proved
by checking that reduction steps whose names are not comparable
can be permuted.

Lemma 4.27 (Permutation). If t0 ⇒Ω0 t1 ⇒Ω t2 and Ω0 6↪→c Ω,
then one of the following holds:

• t0 ⇒Ω t2.
• There is a t′1 such that t0 ⇒Ω t′1 ⇒Ω0 t2.

Proof. Since Ω0 6↪→c Ω, by contraposition of Direct contribution
Lemma 4.21 the redexes of name Ω in t1 are the residuals of redexes
in t0. In particular t0 ⇒Ω0 t1 ⇒Ω t2 is a complete development of
the set of all redexes in t0 of name Ω0 or Ω. By Finite developments
Lemma 4.23 the term t2 is the target of any complete development
of these redexes, and in particular of the one first developing all the
redexes of name Ω and then developing all the redexes of name Ω0

if they have not been erased by the first step.

Lemma 4.28 (Causal completeness). Let Ω0 and Ω be two names
such that Ω0 ↪→n Ω. Then Ω0 ↪→c Ω.

Proof. Write R̄ for the set of all parallel labelled reduction se-
quences of minimal length from an initial term to a term containing
redexes of name Ω. There is a n such that every sequence %̄ ∈ R̄
has the form⇒Ω

%
1
. . . ⇒Ω

%
n

. Write R̄∗ for the set of all sequences
%̄ ∈ R̄ for which there is at least one i ∈ {1, . . . , n} such that
Ω%i 6↪→c Ω.

Suppose R̄∗ is not empty and let i be the greatest integer such
that there is a sequence %̄ ∈ R̄∗ satisfying Ω%i 6↪→c Ω. Let %̄ be such
a sequence in R̄∗ satisfying Ω%i 6↪→c Ω. The sequence %̄ has the
form⇒Ω

%
1
. . . ⇒Ω

%
i
⇒Ω

%
i+1

. . . ⇒Ω
%
n

.
By definition of %̄ we have Ω%i+1 ↪→c Ω. Since Ω%i 6↪→c Ω,

by transitivity of ↪→c we get Ω%i 6↪→c Ω%i+1. Then by Permutation
Lemma 4.27 we can build one of the following sequences:

• A sequence⇒Ω
%
1
. . . ⇒Ω

%
i−1
⇒Ω

%
i+1

. . . ⇒Ω
%
n

strictly shorter
than %̄, which contradicts the minimality of the length of %̄.
• A sequence⇒Ω

%
1
. . . ⇒Ω

%
i+1
⇒Ω

%
i
. . . ⇒Ω

%
n

with Ω%i 6↪→c Ω,
of same length as ρ̄ but which contradicts the maximality of i.

Hence the set R̄∗ must be empty, and every name Ω0 that appears
in a reduction sequence in R̄ satisfies Ω0 ↪→c Ω.

Finally, let Ω0 be a name such that Ω0 ↪→n Ω. By definition 4.20,
every reduction sequence % from an initial term to a term that
contains redexes of name Ω contains a step of name Ω0. It is in
particular the case of any reduction sequence developing a sequence
in R̄. Hence Ω0 ↪→c Ω.

Finally, Causal soundness Lemma 4.26 and Causal completeness
Lemma 4.28 can be combined to prove that the syntactic contribution
relation ↪→c and the semantic neededness relation ↪→n are equal.

Theorem 4.29 (Causality). ↪→c = ↪→n.

4.6 The labelled weak λ-calculus as a DFS
Using the labels of Section 4.4 we get a straightforward definition
for families.

Definition 4.30 (Families). The family relation ' over reduction
steps with history is defined by the following condition: (%1, ρ1) '
(%2, ρ2) if and only if the reduction steps ρ1 and ρ2 have the same
name. Hence families correspond to names, and we extend the
contribution relation ↪→c to families.

Notice that we do not use the histories %1 and %2 in the previous
definition. Indeed, thanks to the causal labelling, the labels in the
target of a reduction sequence % already contains all the relevant
pieces of information about %.

Lemma 4.31. The labelled weak λ-calculus equipped with its
family relation is a Deterministic Family Structure.

Proof. We first check that the labelled weak λ-calculus is a DRS:

[FD] Direct application of the Finite developments Lemma 4.23.

[Acyclicity] In the λ-calculus, if a redex r erases a redex re, then
re is a strict subterm of r. The subterm relation being acyclic,
there is no possible cross-erasure.

The axioms for DFS are then checked as follows:

[Initial] Let ρ1 and ρ2 be two reduction steps from a common
initial term t. If ρ1 and ρ2 are different, in particular they apply
to different positions and have different names.

[Copy] Suppose (%1, ρ1) B (%2, ρ2), then in particular ρ2 ∈
ρ1/(%2/%1). By Residuals Lemma 4.22 the reduction steps
ρ2 and ρ1 have the same name, hence (%1, ρ1) and (%2, ρ2) are
in the same family.

[FFD] Orthogonal TRS satisfy the Finite Family Developments
property [vO97]. Hence the weak λ-calculus does the same by
Bisimulation Proposition 5.10.

[Creation] Direct application of Direct contribution Lemma 4.21.
[Contribution] This axiom can be reworded as ↪→c=↪→n. Conclu-

sion by Causality Theorem 4.29.

Thus, by Glauert and Khasidashvili’s Optimality Proposition 4.8,
any complete needed weak family reduction sequence is optimal,
which we call weak optimality. Such concrete reduction strategies
will be detailed in Section 6.

5. Weak reduction and first-order rewriting
In this section we show that the weak λ-calculus behaves as an
orthogonal first-order rewriting system7. First in Section 5.1 we
recall the formalization of λ-lifting as a higher-order rewriting
system given in the previous paper [Bal12c], which can be used to
prove that the weak λ-calculus is strongly bisimilar to an orthogonal
first-order term rewriting system; then in Section 5.2 we show that
the transformation moreover preserves concepts and properties such
as residuals or neededness.

5.1 Fully lazy λ-lifting
We formalize fully lazy λ-lifting as a higher-order rewriting system
that replaces a skeleton by a single supercombinator symbol. The
labelling of the transformation presented here is a slight simplifica-
tion of the one of the previous paper [Bal12c], but it has roughly the
same properties.

Definition 5.1 (Expansor). An expansor is a bijection ψ : F →
〈〈Λ〉〉 that preserves arity. For any f, g ∈ F we say that g contains
f and we write g ⊃ f if f appears in the expansion ψ(g).
An expansor ψ is well-founded if there is no infinite sequence
f1 ⊃ f2 ⊃

For the rest of the paper, let ψ be a fixed well-founded expansor.
Such a bijection between F and 〈〈Λ〉〉 exists since for any n the set
of n-ary contexts is countable.

For any λ-term t containing F-symbols, the expansor ψ de-
scribes a structure that is implicit in t, in some sense hidden in the
F-symbols. The notion of extended position in a λ-term t gives a
partial account of this structure by indicating ordinary positions of t
as well as “internal” positions of the F-symbols.

Definition 5.2 (Extended positions). The set of the ψ-extended
positions of a λ-term, or simply ψ-positions of t, written posψ(t),
is defined as follows:

posψ(x) = {ε}
posψ(λx.t) = {ε} ∪ 1 · posψ(t)
posψ(t1t2) = {ε} ∪ 1 · posψ(t1) ∪ 2 · posψ(t2)

posψ(f(t1, ..., tn)) = {ε} ∪ (0 · posψ(ψ(f))) ∪ (
⋃
i i · posψ(ti))

7 A rewriting system is orthogonal when its rewriting rules cannot interfere
with each other.

This set if finite since ψ is well-founded.

Example 5.3.
Consider the λ-term

t = f(@(z1, z2), z3)

and suppose the following expansions (with f and g two binary
symbols):

ψ(f) = λx.�g(�, x)
ψ(g) = λy.y��

The following picture shows t and the expansions of the symbols f
and g.

f

@
z1 z2

z3

λx

@
g

x

λy

@

@
y

ψ

ψ

The set of positions of t is pos(t) = {ε, 1, 11, 12, 2}. The set of
ψ-positions of t is:

posψ(t) =
{ε, 1, 11, 12, 2, 0, 01, 012, 0122, 0120, 01201, 012011, 0120111}

The following table gives a correspondence between some ψ-
positions of t and symbols from t, ψ(f), or ψ(g).

ε f
0 λx
012 g
0120 λy

With the next two definitions we propose an initial labelling
that takes into account the expansions of the term. Intuitively, each
node is labelled by the position it would have if the term were fully
expansed.

Definition 5.4 (Expansed positions). Let c be a n-ary context and
p ∈ pos(c) a position of c. The expansion of p relative to c is the
position (p)c,ψ defined by:

(ε)c,ψ = ε

(1 · p)ε(c),ψ = 1 · (p)c,ψ
(1 · p)λx.c,ψ = 1 · (p)c,ψ
(i · p)c1c2,ψ = i · (p)ci,ψ i ∈ {1, 2}

(i · p)f(c1,. . . ,cn),ψ = (qi)
ψ(f),ψ · (p)ci,ψ i ∈ {1, . . . , n}

qi position of ith hole in ψ(f)

Definition 5.5 (Extended initial labelling). For any position p,
the function ip(.) maps λ-terms to labelled λ-terms through the
following rules:

ip(x) = x
ip(ε(t)) = εp(ip·1(t))
ip(λx.t) = λpx.ip·1(t)
ip(t1t2) = @p(ip·1(t1), ip·2(t2))

ip(f(t1, . . . , tn)) = fp(ip·q1(t1), . . . , ip·qn(tn))

∀j. qj = (j)f(t1,. . . ,tn),ψ

Let t be a λ-term. The initial labelling of t is the labelled λ-term
iε(t), also written i(t).

Example 5.6.
Consider the λ-term t = f(@(z1, z2), z3) from example 5.3. Then

i(t) = f ε(@11(z1, z2), z3)

With this extended initial labelling, we can now define the target
system, that is the first-order rewriting system to which the weak
λ-calculus is bisimilar.

Definition 5.7 (Target redex). A target redex is a term over SL of
the form

@ω(εα1(. . . εαn(fγ(t1, . . . , tn))), u)

Its name is the sequence

name(r) = ωα1. . . αnγ

Definition 5.8 (Source & Target reductions). The source reduction
is the labelled β-reduction of definition 4.17. The target reduction
is given by the following rule scheme:

@ω(εα1(. . . εαn(fγ(Z1, . . . , Zn))), Z)
→f

[ωα1. . . αnγ, [Ωk, . . . [Ω1, ε
ε(ip(s))]]]{x :=Z}[Z1, . . . , Zn]

where γ = [Ωk, . . . [Ω1, p]] and ψ(f) = λx.s.

Definition 5.9 (Lambda-lifting). The λ-lifting rewriting system is
defined by the following rules applied in any context (no restriction
to weak reduction here).

• For any label α, variable x, and {x}-skeleton s, the pair
λαx.s[Z1, ..., Zn] →c (ψ−1(λx.s•))α(Z1, ..., Zn) is a λ-
lifting rule of rank 0.
• A pair f(Z1, . . . , Zn) → f ′(Z1, . . . , Zn) is called a λ-lifting

rule of rank n + 1 if there is a reduction step ψ(f) → ψ(f ′)
by a λ-lifting rule of rank n.

Proposition 5.10 (Bisimulation, Balabonski [Bal12c]). The λ-
lifting relation�lft is a strong bisimulation in the global system.

It is also known that the λ-lifting reduction relation is convergent,
and compatible with sharing. In the next section we add new results
that ensure that�lft preserves the properties that are useful to the
study of optimality.

5.2 Properties preserved by the reduction to first order
For any term t, write lift(t) for the normal form of t by λ-lifting.
Similarly, for any position p of a term t, write lift(p) for the set of
its descendants along any complete lifting of t, and for any source
reduction step ρ from t, write lift(ρ) for the residual of ρ after
any complete lifting of t.

In this section we show that lift(.) preserves descendants,
residuals, and neededness.

Lemma 5.11 (Labels and descendants). Let t be a labelled term
whose labels are initial and different, and t � t′ be a reduction
sequence. Then a position p′ ∈ pos(t′) is a descendant of a position
p ∈ pos(t) if and only if there are names Ω1, . . . ,Ωn such that
τt′(p

′) = [Ωn, . . . [Ω1, τt(p)]].

Proof. By induction on the length of the sequence, with the follow-
ing generalized statement:

For any labelled term t, reduction sequence % : t → t′, and
position p0, write

Pα = {p ∈ pos(t) | ∃k, ∃Ωk. . .Ω1, τp(t) = [Ωk, . . . [Ω1, p0]]}
P ′α = {p′ ∈ pos(t′) | ∃k′, ∃Ωk′ . . .Ω1, τp(t) = [Ωk′ , . . . [Ω1, p0]]}

for the sets of the positions of t and t′ where p0 appears. Then

P ′α = Pα/%

With this characterization of descendants, we can use confluence
results on a labelled system to get results about descendants and
residuals.

Lemma 5.12 (Preservation of descendants). Let t be a λ-term,
p ∈ pos(t) a position, and ρ : t→ t′ a source reduction step. Then
lift(p/ρ) = lift(p)/lift(ρ).

Proof. By Bisimulation Proposition 5.10 we have the following
diagram:

t

t′

lift(t)

lift(t′)

ρ lift(ρ)

%lft

%′lft

By definition of descendants along a reduction sequence we have
lift(p/ρ) = (p/ρ)/%′lft = p/(ρ%′lft) as well as p/(%lftlift(ρ)) =
(p/%lft)/lift(ρ) = lift(p)/lift(ρ). Since the sequences ρ%′lft
and %lftlift(ρ) have same target, by Labels and descendants
Lemma 5.11 we also have p/(ρ%′lft) = p/(%lftlift(ρ)). By combin-
ing these equations we get lift(p/ρ) = lift(p)/lift(ρ).

The preservation of residuals is an immediate corollary of the
preservation of descendants.

Lemma 5.13 (Preservation of residuals). Let ρ : t→ t′, ρa : t→ u
and ρr : t′ → u′ be three source reduction steps. Then ρr is
a residual of ρa after ρ if and only if lift(ρr) is a residual of
lift(ρa) after lift(ρ).

Finally, we deduce that λ-lifting also preserves the notion of
neededness, which will allow us in the next section to transfer a
result on needed strategies from first-order rewriting to the weak
λ-calculus.

Theorem 5.14 (Preservation of neededness). Let t be a normalizing
term. Then a source reduction step ρ from t is needed if and only if
the target reduction step lift(ρ) is needed in the target system.

Proof. Let ρ be a needed source reduction step from t. Let %f =
ρf1 . . . ρ

f
n be a normalizing target reduction sequence from lift(t).

By Bisimulation Proposition 5.10 we have a normalizing source
reduction sequence % = ρ1. . . ρn from t. By hypothesis ρ is needed,
hence there exists i such that ρi is a residual of ρ. By Preservation
of residuals Lemma 5.13, the reduction step ρfi is a residual of
lift(ρ). Hence lift(ρ) is needed.

We show similarly that if lift(ρ) is needed, then ρ is also
needed.

The properties stated in this section show that the weak λ-
calculus, while it has the appearance of the λ-calculus, has the
properties of a first-order rewriting system. This first-order essence
of weak reduction will become even more apparent in the next
section.

6. Two weakly optimal strategies
We conclude our investigation by identifying two strategies that
realize the weak optimality characterized in Section 4. The first
strategy (Section 6.1) is call-by-need: Wadsworth’s well-known
technique for efficient evaluation of the λ-calculus [Wad71], which
is also the source of mainstream lazy evaluation mechanisms. The
second strategy (Section 6.2) is a bit more intriguing, since it reaches
optimality without using any sharing (but of course, following
Uncomputability Theorem 3.14 the latter cannot be computable).

6.1 Call-by-need
As shown in the previous paper [Bal12c], the labelled weak λ-
calculus defined in Section 4 describes a graph-based evaluation
mechanism for the λ-calculus, which is exactly the one proposed by
Wadsworth [Wad71]. This is done through the technique of sharing-
via-labelling [Mar91, Bal12a], that has first been introduced by
Maranget.

The main idea is as follows: if two subterms tδ have the same
label δ, then they represent the same node in the corresponding
graph (this node is marked with a star in the picture below), and
have to be reduced in only one step.

@α(@β(tγ , tδ), tδ)
⇒ @α(@β(tγ , t′ζ), t′ζ)

@

@
t t∗

⇒
@

@
t t′

This principle allows us to interpret labelled terms as graphs,
provided a consistency property of the labels is satisfied: two
subterms that have the same label must be equal.

Finally, the following proposition ensures that parallel reduction
preserves the consistency of labels, and thus describes a graph
rewriting system. Moreover, this graph rewriting system is known
to correspond to Wadsworth’s original technique [Bal12c].

Proposition 6.1 (Sharing-via-labelling, Balabonski [Bal12c]). The
following property is preserved by parallel reduction:

Sharing If τp1(t) = τp2(t) then t|p1 = t|p2 .

Hence Wadsworth’s call-by-need implements complete family
reduction. Moreover, call-by-need is known to reduce only needed
redexes [BKKS87], and thus Glauert and Khasidashvili’s Optimality
Proposition 4.8 applies.

Theorem 6.2 (Optimality). Wadsworth’s call-by-need is a weakly
optimal reduction strategy.

Besides marking a well-known reduction strategy as weakly
optimal, this optimality theorem reveals a difference between weak
and non-weak reduction: while any implementation of non-weak
optimality requires a sharing of contexts (see example 4.2), the
sharing of subterms expressible by sharing-via-labelling is enough
for weak optimality.

6.2 Innermost needed reduction
Now we are going to combine the results of the previous sections to
prove that the shortest weak reduction sequences without sharing
have the same length as the complete needed family reduction
sequences. First we transfer a sufficient condition for a reduction
strategy to be optimal from the first-order rewriting literature to
our system, then we check that this condition describes a subset of
complete needed family reduction.

Proposition 6.3 describes a sufficient condition for a reduction
strategy to be optimal in orthogonal term rewriting systems, that
has been established by Khasidashvili. Using our formalization of
λ-lifting, we transfer this result to the weak λ-calculus.

Proposition 6.3 (Khasidashvili’s optimality criterion [Kha93]). Let
t be a term in an orthogonal TRS, and % a normalizing reduction
sequence of source t in which each step reduces an innermost needed
redex. Then no normalizing reduction sequence of source t is shorter
than %.

Theorem 6.4 (Optimality criterion). Let t be a λ-term, and % a
normalizing weak reduction sequence of source t in which each
step reduces an innermost needed redex. Then no normalizing weak
reduction sequence of source t is shorter than %.

Proof. Suppose there is a normalizing weak reduction sequence %′

of source t that is shorter than %. Let %f (resp. %′f) be the image of %
(resp. %′) in the target system. By Bisimulation Proposition 5.10, %f
and %′f have the same source, are both normalizing, and %′f is shorter
than %f . Moreover, by Preservation of neededness Theorem 5.14,
each reduction step in the sequence %f reduces an innermost needed
redex. Hence by Khasidashvili’s Optimality Proposition 6.3 the
reduction sequence %f is of minimal length, which contradicts the
existence of the sequences %′f and %′.

This criterion shows once again that weak reduction is closer to
first-order rewriting than to the usual non-weak λ-calculus. Indeed,
Guerrini proved with a counter-example that innermost needed
reduction is not optimal in the non-weak λ-calculus [Gue96].

Lemma 6.5. An innermost needed reduction step does not duplicate
any needed redex.

Proof. Deduced from Khasidashvili’s results [Kha93] using λ-
lifting.

Thus an innermost needed reduction sequence performs only
needed reduction steps on redexes that have not been duplicated, and
such a sequence is an instance of complete needed family reduction.

Theorem 6.6 (Optimality). Innermost needed reduction is a weakly
optimal reduction strategy.

This optimality theorem gives away another important difference
between weak and non-weak reduction. Indeed, Lamping exhibited
an example for which non-weak Lévy-optimality cannot be realized
without sharing [Lam90].

7. Conclusion
We characterized optimal evaluation in the weak λ-calculus and
identified two interesting weakly optimal strategies: the well-known
call-by-need strategy, and innermost needed reduction. The latter
illustrates the fact that the weak λ-calculus has the properties of a
first-order rewriting system, and also shows that weakly optimal
evaluation does not require sharing. However, we also showed that
the optimal strategies without sharing cannot be computable. Finally,
in the setting of weak reduction the meaning of sharing is not to
make the shortest path shorter, but rather to make it effectively
reachable.

Acknowledgments
Thanks to Delia Kesner, Olivier Danvy and Vincent van Oostrom,
who offered me the tools to explore this topic. Thanks also to
François Pottier, Mike Rainey, and the ICFP reviewers for their
helpful comments and suggestions.

References
[Bal12a] Thibaut Balabonski. Axiomatic sharing-via-labelling. In

Ashish Tiwari, editor, RTA, volume 15 of LIPIcs, pages 85–100.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[Bal12b] Thibaut Balabonski. La pleine paresse, une certaine optimalité.
Ph.D. thesis, Université Paris 7 – Diderot, 2012.

[Bal12c] Thibaut Balabonski. A unified approach to fully lazy sharing. In
John Field and Michael Hicks, editors, POPL, pages 469–480.
ACM, 2012.

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax
and Semantics, volume 103 of Studies in Logic and the Foun-
dations of Mathematics. North-Holland Publishing Company,
Amsterdam, revised edition edition, 1984.

[BBKV76] Hendrik Pieter Barendregt, Jan A. Bergstra, Jan Willem Klop,
and Henri Volken. Some notes on lambda reduction. Technical
Report 22, University of Utrecht, Dpt. of mathematics, 1976.

[BKKS87] Hendrik Pieter Barendregt, Richard Kennaway, Jan Willem
Klop, and M. Ronan Sleep. Needed reduction and spine strate-
gies for the lambda calculus. Information and Computation,
75(3):191–231, 1987.

[BLM07] Tomasz Blanc, Jean-Jacques Lévy, and Luc Maranget. Sharing
in the weak lambda-calculus revisited. In Erik Barendsen,
Herman Geuvers, Venanzio Capretta, and Milad Niqui, editors,
Reflections on Type Theory, Lambda Calculus, and the Mind,
pages 41–50. ICIS, Faculty of Science, Radbout University
Nijmegen, 2007. Essays Dedicated to Henk Barendregt on the
Occasion of his 60th Birthday.

[cH98] Naim Çagman and J. Roger Hindley. Combinatory weak
reduction in lambda calculus. Theoretical Computer Science,
198(1-2):239–247, 1998.

[DS00] Olivier Danvy and Ulrik Pagh Schultz. Lambda-dropping:
transforming recursive equations into programs with block
structure. Theoretical Computer Science, 248(1-2):243–287,
2000.

[GK96] John R. W. Glauert and Zurab Khasidashvili. Relative normal-
ization in deterministic residual structures. In Hélène Kirchner,
editor, CAAP, volume 1059 of Lecture Notes in Computer Sci-
ence, pages 180–195. Springer, 1996.

[Gue96] Stefano Guerrini. Theoretical and Practical Issues of Opti-
mal Implementations of Functional Languages. Ph.D. thesis,
Università di Pisa, 1996.

[How70] William Alvin Howard. Assignment of ordinals to terms for
primitive recursive functionals of finite type. In Intuitionism
and Proof Theory, pages 443–458, 1970.

[Kha93] Zurab Khasidashvili. Optimal normalization in orthogonal term
rewriting systems. In Claude Kirchner, editor, RTA, volume
690 of Lecture Notes in Computer Science, pages 243–258.
Springer, 1993.

[KvOvR93] Jan Willem Klop, Vincent van Oostrom, and Femke van Raams-
donk. Combinatory reduction systems: Introduction and survey.
Theoretical Computer Science, 121(1&2):279–308, 1993.

[Lam90] John Lamping. An algorithm for optimal lambda calculus
reduction. In Frances E. Allen, editor, POPL, pages 16–30.
ACM Press, 1990.

[Lé78] Jean-Jacques Lévy. Réductions correctes et optimales dans le
lambda-calcul. Ph.D. thesis, Université Paris VII, 1978.

[Lé80] Jean-Jacques Lévy. Optimal reductions in the lambda-calculus.
In To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalisms, pages 159–191, 1980.

[Mar91] Luc Maranget. Optimal derivations in weak lambda-calculi and
in orthogonal terms rewriting systems. In David S. Wise, editor,
POPL, pages 255–269. ACM Press, 1991.

[PJ87] Simon L. Peyton-Jones. The Implementation of Functional
Programming Languages. Prentice-Hall, 1987.

[Sco68] Dana Scott. A system of functional abstraction, 1968. Lectures
delivered at University of California, Berkeley, Cal., 1962/63.

[Ter03] Terese. Term Rewriting Seminar – Terese. Vol. 55 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University
Press, 2003.

[vO97] Vincent van Oostrom. Finite family developments. In Hu-
bert Comon, editor, RTA, volume 1232 of Lecture Notes in
Computer Science, pages 308–322. Springer, 1997.

[Wad71] Christopher P. Wadsworth. Semantics and Pragmatics of the
Lambda Calculus. Ph.D. thesis, Oxford, 1971.

